How to overcome that Method error ?
Data
7043×2 Matrix{Float64}:
-1.27735 -1.16024
0.0663227 -0.259611
-1.23664 -0.362635
0.514215 -0.746482
-1.23664 0.197351
-0.992332 1.15946
-0.422287 0.808849
⋮
1.61359 -1.44937
-0.340852 0.665945
1.61359 1.27744
-0.870179 -1.16855
-1.1552 0.320315
1.36928 1.35886
Data= (data .- mean(data,dims=1))./std(data,dims=1)
p
PCA(indim = 7043, outdim = 1, principalratio = 1.0)
p=fit(PCA,Data,maxoutdim=2)
7043×1 Matrix{Float64}:
-0.0011379038573442269
0.003166852111996749
-0.00849202937785105
0.01224926425921756
-0.013932997653130772
-0.020907400623596868
-0.011962038872230636
⋮
0.029760511490590863
-0.009782299361486769
0.003266063598205041
0.0028990384530702905
-0.014336507175160657
0.00010121411503414527
projection(p)
P
7043×1 Matrix{Float64}:
-0.0011
0.0032
-0.0085
0.0122
-0.0139
-0.0209
-0.012
⋮
0.0298
-0.0098
0.0033
0.0029
-0.0143
0.0001
P=round.(projection(p), digits=4)
MethodError: no method matching predict(::Matrix{Float64}, ::Matrix{Float64})
Closest candidates are:
predict(!Matched::MultivariateStats.FactorAnalysis, ::AbstractVecOrMat{T}) where T<:Real at ~/.julia/packages/MultivariateStats/zLpz8/src/fa.jl:64
predict(!Matched::MultivariateStats.ICA, ::AbstractVecOrMat{<:Real}) at ~/.julia/packages/MultivariateStats/zLpz8/src/ica.jl:38
predict(!Matched::MultivariateStats.SubspaceLDA, ::AbstractVecOrMat{T}) where T<:Real at ~/.julia/packages/MultivariateStats/zLpz8/src/lda.jl:427
...
transform(::Matrix{Float64}, ::Matrix{Float64})@deprecated.jl:72
top-level scope@Local: 1[inlined]
yte=MultivariateStats.transform(P,data)