I ended up doing a very hackish implementation using Symbolics
using JuMP
using Ipopt
import Symbolics
@Symbolics.variables x[1:2]
x = Symbolics.scalarize(x)
function g(x)
[
x[1]^4 + x[2]^5,
exp(x[1])
]
end
function o(x)
exp(x[1]) + exp(x[2])
end
C = g(x)
O = o(x)
m = Model(Ipopt.Optimizer)
# replace variable
@variable(m, x[1:2])
for i in eachindex(C)
eval("@NLconstraint(m, $(repr(C[i])) <= 0")
end
eval("@NLobjective(m, Min, $(repr(O)))")
optimize!(m)
println(value.(x))