Hi. I have run the first intro example in MLJ (in Jupyter), and it seems to have run OK, but the display of the results seems garbled:
evaluate(my_tree_model, X, y,
resampling=CV(shuffle=true), measure=cross_entropy, verbosity=0)
┌───────────────────────────────────┬───────────────┬───────────────────────────
│ _.measure │ _.measurement │ _.per_fold ⋯
├───────────────────────────────────┼───────────────┼───────────────────────────
│ \e[34mLogLoss{Float64} @298\e[39m │ 1.92 │ [1.44, 2.88, 1.44, 1.44, ⋯
└───────────────────────────────────┴───────────────┴───────────────────────────
1 column omitted
_.per_observation = [[[2.22e-16, 2.22e-16, ..., 2.22e-16], [2.22e-16, 2.22e-16, ..., 2.22e-16], [2.22e-16, 2.22e-16, ..., 2.22e-16], [2.22e-16, 2.22e-16, ..., 2.22e-16], [2.22e-16, 2.22e-16, ..., 2.22e-16], [2.22e-16, 2.22e-16, ..., 2.22e-16]]]
_.fitted_params_per_fold = [ … ]
_.report_per_fold = [ … ]
It seems there lots of ‘\e[34m’-type (meta-character?) expresssions. Is there a way to suppress these?
Thanks for any help.