You have multiple issues:
-
range(0,1,m)
should berange(0,1; length = m)
(how did this work otherwise?) - Sometimes your objective function errors because the root doesn’t exist. If I run with Ipopt, I get
ERROR: ArgumentError: The interval [a,b] is not a bracketing interval. You need f(a) and f(b) to have different signs (f(a) * f(b) < 0). Consider a different bracket or try fzero(f, c) with an initial guess c.
Here’s what I would do:
using JuMP
import Ipopt
import Roots
function main()
k, d, c1, c2, c3, m = 0.5, 1, 0, 2, 1, 10
nparam = 2 * d + 2
m -= 1
vGrid = range(0, 1; length = m)
function obj(α::T...) where {T<:Real}
αb, αs = α[1:d+1], α[d+2:end]
B(v) = sum(αb[i] * v^(i-1) for i in 1:d+1)
B1(v) = sum(αb[i] * (i-1) * v^(i-2) for i in 2:d+1)
S(v) = sum(αs[i] * v^(i-1) for i in 1:d+1)
S1(v) = sum(αs[i] * (i-1) * v^(i-2) for i in 2:d+1)
function FOCb(y)
sy = S(y)
binv = Roots.fzero(q -> B(q) - sy, zero(T))
return k * y * S1(y) + sy - binv
end
function FOCs(x)
bx = B(x)
sinv = Roots.fzero(q -> S(q) - bx, zero(T))
return (1-k) * (1-x) * B1(x) - B(x) + sinv
end
return sum(FOCb(x)^2 + FOCs(x)^2 for x in vGrid)
end
αa = [1/12, 2/3, 1/4, 2/3]
model = Model(Ipopt.Optimizer)
@variable(model, -c3 <= α[i=1:nparam] <= c3, start = αa[i]+ 0.1 * rand())
@constraints(model, begin
[j = 1:m], sum(α[i] * (i-1) * vGrid[j]^(i-2) for i in 2:d+1) >= c1
[j = 1:m], sum(α[d+1+i] * (i-1) * vGrid[j]^(i-2) for i in 2:d+1) >= c1
end)
register(model, :obj, nparam, obj; autodiff = true)
@NLobjective(model, Min, obj(α...))
optimize!(model)
print(solution_summary(model))
return value.(α)
end
main()