Hello everyone, I apologize for the probably naive question, but if I wanted to initialize the layer parameters with glorot_uniform in Lux with a gain smaller than the default, how do I then obtain the parameters and status to define the optimization problem?
I’d like to do something like this:
approximating_neural_network = Lux.Chain(Lux.Dense(4, 16, tanh; init_weight=Lux.glorot_uniform(rng, 4, 16, gain=0.01), init_bias=Lux.zeros32), Lux.Dense(16, 16, tanh; init_weight=Lux.glorot_uniform(rng, 16, 16, gain=0.01), init_bias=Lux.zeros32), Lux.Dense(16, 1; init_weight=Lux.glorot_uniform(rng, 16, 1, gain=0.01), init_bias=Lux.zeros32))
# p_net, st = Lux.setup(rng, approximating_neural_network)
p_net, st?