using JuMP, Ipopt
function parametertest()
m = Model(Ipopt.Optimizer)
set_silent(m)
a = [0.15, 0.16, 0.72, -0.80, -12.0]
@variable(m, x[1:5])
@variable(m, abs_x[1:5])
for i in 1:5
@constraint(m, abs_x[i] ≥ x[i])
@constraint(m, abs_x[i] ≥ -x[i])
end
@NLparameter(m, gamma == 0.0)
@NLconstraint(m, Lasso, sum(abs_x[i] for i in 1:5) ≤ gamma)
@objective(m, Min, sum((a[i] - x[i])^2 for i in 1:5))
gammas = [1e-10, 0.1, 1.0, 15.0, 200]
for g in gammas
set_value(gamma, g)
optimize!(m)
@show value(gamma)
@show value(sum(value(abs_x[i]) for i in 1:5))
end
end
parametertest()
yields
value(gamma) = 1.0e-10
value(sum((value(abs_x[i]) for i = 1:5))) = 1.000154534191108e-8 # Infeasible!
value(gamma) = 0.1
value(sum((value(abs_x[i]) for i = 1:5))) = 0.10000000989464701
value(gamma) = 1.0
value(sum((value(abs_x[i]) for i = 1:5))) = 1.0000000098860817
value(gamma) = 15.0
value(sum((value(abs_x[i]) for i = 1:5))) = 14.642196754232643
value(gamma) = 200.0
value(sum((value(abs_x[i]) for i = 1:5))) = 143.0505423096824
Notice that in the first case, the absolute error is on the order of 1e-8
, but the relative error is a factor of 100! Is there a way I can tell Ipopt not to accept a solution until the relative error is acceptably small?
In this particular case, better results can be obtained by multiplying both sides of the @NLconstraint
by a constant like 1e10
, but it is not always obvious beforehand which constant is appropriate.