Your issue is that c is a vector-valued constraint. It does not have a single coefficient for x[1]. What do you expect the return value to be? The vector [s[1], 0, ..., 0]?
Do you intend instead:
julia> s = rand(10);
julia> model = JuMP.Model()
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: NO_OPTIMIZER
Solver name: No optimizer attached.
julia> JuMP.@variable(model, x[1:length(s)])
10-element Vector{VariableRef}:
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]
x[9]
x[10]
julia> JuMP.@constraint(model, c, s .* x .>= 0)
10-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, ScalarShape}}:
c : 0.5709969834637747 x[1] ≥ 0
c : 0.7619275184835252 x[2] ≥ 0
c : 0.34898255811341505 x[3] ≥ 0
c : 0.05870819653256942 x[4] ≥ 0
c : 0.6044341953123104 x[5] ≥ 0
c : 0.9001617090928788 x[6] ≥ 0
c : 0.8589634852858642 x[7] ≥ 0
c : 0.8241775821914167 x[8] ≥ 0
c : 0.6172547651461359 x[9] ≥ 0
c : 0.830700523487739 x[10] ≥ 0
julia> JuMP.normalized_coefficient(c[1], x[1])
0.5709969834637747