JuMP conditional constraint

I want to implement a conditional constraint to my model where each non-zero variable, force the next two variables to be zero. In other words, if x[t]=0 then x[t+1]=0 and x[t+2]=0.

I tried a quadratic constrain as below, but Gorubi, Cbc solvers could not solve it.
x[t] * (x[t+1] + x[t+2]) == 0

I tried also complementary constraint as below, but it gives an error.

@variable(model, x[1:T]>=0, Int)
@constraint(model, xx[t=1:T], complements((x[t+1]+x[t+2]), x[t]))

I also tried a loop with if statement, but do not work either.

How can I implement this constraint?

Thanks for all help :slightly_smiling_face:

1 Like

Please post the error you get. Here I guess you have an out of bound error. Replace t + i by ((t - 1 + i) % T) + 1

Here is the error:

MethodError: objects of type VariableRef are not callable

Do you mean like this?

@constraint(model, xx[t=1:T], complements((x[((t) % T) + 1] + x[((t+1) % T) + 1]), x[t]))

thank you!

I do not get your error, it works for me. Here is what I get with your code on Julia v1.4.1:

julia> using JuMP

julia> model = Model();

julia> T = 3
3

julia> @variable(model, x[1:T]>=0, Int)
3-element Array{VariableRef,1}:
 x[1]
 x[2]
 x[3]

julia> @constraint(model, xx[t=1:T], complements((x[t+1]+x[t+2]), x[t]))
ERROR: BoundsError: attempt to access 3-element Array{VariableRef,1} at index [4]
Stacktrace:
 [1] getindex(::Array{VariableRef,1}, ::Int64) at ./array.jl:788
 [2] macro expansion at /home/blegat/.julia/packages/MutableArithmetics/ZGFsK/src/rewrite.jl:227 [inlined]
 [3] macro expansion at /home/blegat/.julia/packages/JuMP/MnJQc/src/macros.jl:381 [inlined]
 [4] (::var"#9#10")(::Int64) at /home/blegat/.julia/packages/JuMP/MnJQc/src/Containers/macro.jl:183
 [5] #26 at /home/blegat/.julia/packages/JuMP/MnJQc/src/Containers/container.jl:70 [inlined]
 [6] iterate at ./generator.jl:47 [inlined]
 [7] collect_to!(::Array{ConstraintRef{Model,MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},MathOptInterface.Complements},VectorShape},1}, ::Base.Generator{JuMP.Containers.VectorizedProductIterator{Tuple{Base.OneTo{Int64}}},JuMP.Containers.var"#26#27"{var"#9#10"}}, ::Int64, ::Tuple{Tuple{Int64,Int64}}) at ./array.jl:711
 [8] collect_to_with_first!(::Array{ConstraintRef{Model,MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},MathOptInterface.Complements},VectorShape},1}, ::ConstraintRef{Model,MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},MathOptInterface.Complements},VectorShape}, ::Base.Generator{JuMP.Containers.VectorizedProductIterator{Tuple{Base.OneTo{Int64}}},JuMP.Containers.var"#26#27"{var"#9#10"}}, ::Tuple{Tuple{Int64,Int64}}) at ./array.jl:689
 [9] collect(::Base.Generator{JuMP.Containers.VectorizedProductIterator{Tuple{Base.OneTo{Int64}}},JuMP.Containers.var"#26#27"{var"#9#10"}}) at ./array.jl:670
 [10] map(::Function, ::JuMP.Containers.VectorizedProductIterator{Tuple{Base.OneTo{Int64}}}) at ./abstractarray.jl:2098
 [11] container at /home/blegat/.julia/packages/JuMP/MnJQc/src/Containers/container.jl:70 [inlined]
 [12] container(::Function, ::JuMP.Containers.VectorizedProductIterator{Tuple{Base.OneTo{Int64}}}) at /home/blegat/.julia/packages/JuMP/MnJQc/src/Containers/container.jl:65
 [13] top-level scope at /home/blegat/.julia/packages/JuMP/MnJQc/src/macros.jl:79

julia> @constraint(model, xx[t=1:T], complements((x[((t) % T) + 1] + x[((t+1) % T) + 1]), x[t]))
3-element Array{ConstraintRef{Model,MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},MathOptInterface.Complements},VectorShape},1}:
 xx[1] : [x[2] + x[3], x[1]] ∈ MathOptInterface.Complements(1)
 xx[2] : [x[3] + x[1], x[2]] ∈ MathOptInterface.Complements(1)
 xx[3] : [x[1] + x[2], x[3]] ∈ MathOptInterface.Complements(1)

(@v1.4) pkg> st JuMP
Status `~/.julia/environments/v1.4/Project.toml`
  [4076af6c] JuMP v0.21.2

PS: See PSA: make it easier to help you for how to format the code in your question.

Don’t use a quadratic constraint or a complementary constraint for this. Cbc is a mixed-integer linear solver.

You should use a standard linear reformulation like the “big-M” method:
https://www.gurobi.com/documentation/9.0/refman/num_dealing_with_big_m_con.html

thank you, it works without defining the solver but as @odow just mentioned, when I define the Cbc as a solver, it does not support this kind of constraint and gives this error:

model = Model(Cbc.Optimizer)
T = 3
@variable(model, x[1:T]>=0, Int)
@constraint(model, xx[t=1:T], complements((x[((t) % T) + 1] + x[((t+1) % T) + 1]), x[t]))


>>> Constraints of type MathOptInterface.VectorAffineFunction{Float64}-in-MathOptInterface.Complements are not supported by the solver and there are no bridges that can reformulate it into supported constraints.

thank you, but I could not understand how I should change my constraint in “big-M” method. could you please give an example regarding my problem?

One alternative to the “big-M” is to use SOS1 constraints which are supported by Cbc.
In fact, you can even use indicator constraints are they are automatically bridged to SOS1 constraints.
With the following:

using JuMP, Cbc
model = Model(Cbc.Optimizer)
set_silent(model)
T = 3
@variable(model, x[1:T]>=0, Int)
next(t, i) = x[((t - 1 + i) % T) + 1]
@constraint(model, xx1[t=1:T], x[t] => {next(t, 1) + next(t, 2) == 0})
optimize!(model)
@show value.(x)
MOI.Bridges.print_graph(backend(model).optimizer)

I get

value.(x) = [0.0, 0.0, 0.0]
Bridge graph with 3 variable nodes, 7 constraint nodes and 0 objective nodes.
 [1] constrained variables in `MOI.IndicatorSet{MOI.ACTIVATE_ON_ONE,MOI.EqualTo{Float64}}` are supported (distance 2) by adding free variables and then constrain them, see (2).
 [2] constrained variables in `MOI.Nonpositives` are supported (distance 2) by adding free variables and then constrain them, see (6).
 [3] constrained variables in `MOI.Nonnegatives` are supported (distance 2) by adding free variables and then constrain them, see (7).
 (1) `MOI.VectorAffineFunction{Float64}`-in-`MOI.IndicatorSet{MOI.ACTIVATE_ON_ONE,MOI.EqualTo{Float64}}` constraints are bridged (distance 1) by MOIB.Constraint.IndicatorSOS1Bridge{Float64,MOI.EqualTo{Float64},Nothing}.
 (2) `MOI.VectorOfVariables`-in-`MOI.IndicatorSet{MOI.ACTIVATE_ON_ONE,MOI.EqualTo{Float64}}` constraints are bridged (distance 1) by MOIB.Constraint.IndicatorSOS1Bridge{Float64,MOI.EqualTo{Float64},Nothing}.
 (3) `MOI.VectorAffineFunction{Float64}`-in-`MOI.Zeros` constraints are bridged (distance 1) by MOIB.Constraint.ScalarizeBridge{Float64,MOI.ScalarAffineFunction{Float64},MOI.EqualTo{Float64}}.
 (4) `MOI.VectorAffineFunction{Float64}`-in-`MOI.Nonnegatives` constraints are bridged (distance 1) by MOIB.Constraint.ScalarizeBridge{Float64,MOI.ScalarAffineFunction{Float64},MOI.GreaterThan{Float64}}.
 (5) `MOI.VectorAffineFunction{Float64}`-in-`MOI.Nonpositives` constraints are bridged (distance 1) by MOIB.Constraint.ScalarizeBridge{Float64,MOI.ScalarAffineFunction{Float64},MOI.LessThan{Float64}}.
 (6) `MOI.VectorOfVariables`-in-`MOI.Nonpositives` constraints are bridged (distance 1) by MOIB.Constraint.ScalarizeBridge{Float64,MOI.SingleVariable,MOI.LessThan{Float64}}.
 (7) `MOI.VectorOfVariables`-in-`MOI.Nonnegatives` constraints are bridged (distance 1) by MOIB.Constraint.ScalarizeBridge{Float64,MOI.SingleVariable,MOI.GreaterThan{Float64}}.

You see in (1) that the indicator constraint is bridged into SOS1 constraints.

3 Likes

It was a great idea, perfectly works. Thank you so much :slightly_smiling_face: :+1:

Cool! I forgot this was working now.