Instability diffeq

I have a system with a dependent mass matrix. It always return me some mensage of instability. Is it an intrisic characteristic of the system?
Any thing I can do about?

using DifferentialEquations
 
    alpha=0.105
    N0 = 5
    Ar=2

    Eeq=(1.0+N0)/(2.0*N0)+((9.0+6.0*N0+9.0*N0^2.0)^0.5/6.0/N0)


    function update_func(A,u,p,t)
        
        E = (9*N0-(u[1]+u[2]+u[3]))/(9*N0-3*(u[1]+u[2]+u[3]))
        
        De = 0.1 
        
        A[1,1] = De*u[5]
        A[1,2] = 0
        A[1,3] = 0
        A[1,4] = 0
        A[1,5] = -2*De*u[1]
        A[1,6] = 0

        A[2,1] = 0
        A[2,2] = De*u[5]
        A[2,3] = 0
        A[2,4] = -2*De*u[1]*u[5]/u[4]
        A[2,5] = 0
        A[2,6] = 0

        A[3,1] = 0
        A[3,2] = 0
        A[3,3] = De*u[5]
        A[3,4] = 0
        A[3,5] = 0
        A[3,6] = -2*De*u[3]*u[5]/u[6]

        A[4,1] = 0
        A[4,2] = 0    
        A[4,3] = 0    
        A[4,4] = 1.
        A[4,5] = 0    
        A[4,6] = 0  
        
        A[5,1] = 0
        A[5,2] = 0
        A[5,3] = 0
        A[5,4] = 1/u[4]
        A[5,5] = 1/u[5]
        A[5,6] = 1/u[6]


        A[6,1] = 1/(u[1]-u[3]) + 2*N0/E/(3*N0-u[1]-u[2]-u[3])^2
        A[6,2] = 2*N0/E/(3*N0-u[1]-u[2]-u[3])^2
        A[6,3] = -1/(u[1]-u[3]) + 2*N0/E/(3*N0-u[1]-u[2]-u[3])^2
        A[6,4] = 1/u[4]
        A[6,5] = 0    
        A[6,6] = 1/u[6]

    end


    function casting(du,u,p,t)

        E = (9*N0-(u[1]+u[2]+u[3]))/(9*N0-3*(u[1]+u[2]+u[3]))

        kx = ((1.0-alpha)+alpha*E*u[1])*(1-E*u[1])
        ky = ((1.0-alpha)+alpha*E*u[2])*(1-E*u[2])
        kz = ((1.0-alpha)+alpha*E*u[3])*(1-E*u[3])

        du[1] = kx
        du[2] = ky
        du[3] = kz
        du[4] = -Ar*((u[2]-u[3])/(u[1]-u[3]))^(1/2)
        du[5] = 0
        du[6] = 0

        nothing    

    end
    
    
    guess = 2

    uu0 = [guess; 1/Eeq; 1/Eeq; 1.0; 1.0; 1.0]
    

    M = DiffEqArrayOperator(ones(6,6),update_func=update_func)
    tspan = (0, 1.0)
    prob = ODEProblem(ODEFunction(casting, mass_matrix=M), uu0, tspan)
    sol = solve(prob,Rodas5())
┌ Warning: Instability detected. Aborting
└ @ SciMLBase C:\Users\jorgem63\.julia\packages\SciMLBase\n3U0M\src\integrator_interface.jl:351
retcode: Unstable
Interpolation: 3rd order Hermite
t: 1-element Vector{Float64}:
 0.0
u: 1-element Vector{Vector{Float64}}:
 [2.0, 0.8759615953640396, 0.8759615953640396, 1.0, 1.0, 1.0]

Do you do everything mentioned here?

Note dependent mass matrices are less stably handled by Rosenbrock methods, so did you try DAEProblem with IDA?