When N = 6000
, the X
matrix is dense with 36,000,000 elements. This is very large. Even if you can build such a problem, SCS will likely have a hard time solving it.
How large N
do you hope to solve?
using Convex, SCS
function solve_convex(N, c)
A = ones(Float64, (N, N))
X = Variable((N, N), Positive())
problem = minimize(sum(X), [eigmax(A .* X) <= c, X <= 1])
# Just so we can measure the time to construct in Convex
solver = Convex.MOI.OptimizerWithAttributes(SCS.Optimizer, "max_iters" => 1)
solve!(problem, solver)
return X.value
end
Here are some examples:
julia> @time solve_convex(800, 0.3);
------------------------------------------------------------------
SCS v3.2.4 - Splitting Conic Solver
(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 640002, constraints m: 1920002
cones: z: primal zero / dual free vars: 319601
l: linear vars: 1280001
s: psd vars: 320400, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
max_iters: 1, normalize: 1, rho_x: 1.00e-06
acceleration_lookback: 10, acceleration_interval: 10
lin-sys: sparse-direct-amd-qdldl
nnz(A): 2880402, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------
0| 6.04e+00 1.04e+02 1.18e+06 -5.91e+05 1.00e-01 3.46e+00
1| 6.04e+00 1.04e+02 1.18e+06 -5.91e+05 1.00e-01 3.57e+00
------------------------------------------------------------------
status: solved (inaccurate - reached max_iters)
timings: total: 3.59e+00s = setup: 2.56e+00s + solve: 1.04e+00s
lin-sys: 5.67e-02s, cones: 4.48e-01s, accel: 3.70e-08s
------------------------------------------------------------------
objective = -591280.501761 (inaccurate)
------------------------------------------------------------------
┌ Warning: Problem status ITERATION_LIMIT; solution may be inaccurate.
└ @ Convex ~/.julia/packages/Convex/b2S4H/src/solution.jl:342
5.908103 seconds (13.44 M allocations: 1.650 GiB, 6.93% gc time)
julia> @time solve_convex(1000, 0.3);
------------------------------------------------------------------
SCS v3.2.4 - Splitting Conic Solver
(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 1000002, constraints m: 3000002
cones: z: primal zero / dual free vars: 499501
l: linear vars: 2000001
s: psd vars: 500500, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
max_iters: 1, normalize: 1, rho_x: 1.00e-06
acceleration_lookback: 10, acceleration_interval: 10
lin-sys: sparse-direct-amd-qdldl
nnz(A): 4500502, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------
0| 6.09e+00 9.42e+01 1.34e+06 -6.70e+05 1.00e-01 5.43e+00
1| 6.09e+00 9.42e+01 1.34e+06 -6.70e+05 1.00e-01 5.61e+00
------------------------------------------------------------------
status: solved (inaccurate - reached max_iters)
timings: total: 5.64e+00s = setup: 4.03e+00s + solve: 1.61e+00s
lin-sys: 7.61e-02s, cones: 8.40e-01s, accel: 3.20e-08s
------------------------------------------------------------------
objective = -670302.744957 (inaccurate)
------------------------------------------------------------------
┌ Warning: Problem status ITERATION_LIMIT; solution may be inaccurate.
└ @ Convex ~/.julia/packages/Convex/b2S4H/src/solution.jl:342
10.896022 seconds (21.00 M allocations: 2.439 GiB, 21.78% gc time)
julia> @time solve_convex(2000, 0.3);
------------------------------------------------------------------
SCS v3.2.4 - Splitting Conic Solver
(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 4000002, constraints m: 12000002
cones: z: primal zero / dual free vars: 1999001
l: linear vars: 8000001
s: psd vars: 2001000, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
max_iters: 1, normalize: 1, rho_x: 1.00e-06
acceleration_lookback: 10, acceleration_interval: 10
lin-sys: sparse-direct-amd-qdldl
nnz(A): 18001002, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------
0| 6.81e+00 5.74e+01 1.63e+06 -8.16e+05 1.00e-01 3.10e+01
1| 6.81e+00 5.74e+01 1.63e+06 -8.16e+05 1.00e-01 3.18e+01
------------------------------------------------------------------
status: solved (inaccurate - reached max_iters)
timings: total: 3.22e+01s = setup: 2.09e+01s + solve: 1.13e+01s
lin-sys: 3.86e-01s, cones: 6.47e+00s, accel: 3.40e-08s
------------------------------------------------------------------
objective = -815705.625274 (inaccurate)
------------------------------------------------------------------
┌ Warning: Problem status ITERATION_LIMIT; solution may be inaccurate.
└ @ Convex ~/.julia/packages/Convex/b2S4H/src/solution.jl:342
51.262972 seconds (84.00 M allocations: 9.390 GiB, 14.33% gc time)
The problem gets very large very quickly.