This topic is sharing an experience, probably a noob has not seen before (me included).
Put it simply, I’m solving a disjointed bilinear programming using RLT, and wasn’t realizing that the number of constraints will be (almost) prohibitive.
I used JuMP to model the problem, I guess it probably takes more than 1 hour to add the whole set of constraints. This is the first time I witness the barrier method in the context of an LP.
julia> lpr
lpr_lMD
├ solver: Gurobi
├ objective_sense: MAX_SENSE
│ └ objective_function_type: JuMP.AffExpr
├ num_variables: 17169
├ num_constraints: 1492050
│ └ JuMP.AffExpr in MOI.GreaterThan{Float64}: 1492050
└ Names registered in the model
└ :cross_multrix, :g_x_DJ, :g_x_Dv, :lpr_DI, :lpr_DJ, :lpr_Dv, :lpr_g
julia> solve_to_normality(lpr);
Gurobi Optimizer version 12.0.1 build v12.0.1rc0 (win64 - Windows 11.0 (26100.2))
CPU model: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 1492050 rows, 17169 columns and 13609742 nonzeros
Model fingerprint: 0x7d117878
Coefficient statistics:
Matrix range [3e-01, 1e+02]
Objective range [5e-02, 9e-01]
Bounds range [0e+00, 0e+00]
RHS range [3e-01, 5e+03]
Presolve removed 17338 rows and 0 columns
Presolve time: 11.55s
Presolved: 17169 rows, 1474881 columns, 13592573 nonzeros
Concurrent LP optimizer: primal simplex and barrier
Showing barrier log only...
Ordering time: 4.36s
Barrier statistics:
AA' NZ : 6.388e+07
Factor NZ : 1.474e+08 (roughly 1.8 GB of memory)
Factor Ops : 1.687e+12 (roughly 10 seconds per iteration)
Threads : 3
Objective Residual
Iter Primal Dual Primal Dual Compl Time
0 5.71120126e+05 0.00000000e+00 6.05e+02 0.00e+00 3.95e+00 28s
1 4.37893245e+05 -3.45183484e+02 4.47e+02 1.30e+01 2.71e+00 28s
2 2.67897039e+05 -4.37239984e+02 2.42e+02 1.25e+01 1.67e+00 29s
3 1.46906844e+05 -3.67646021e+02 1.24e+02 9.69e+00 9.33e-01 29s
4 8.86396264e+04 -1.69332027e+02 7.03e+01 6.12e+00 5.43e-01 30s
5 4.22819423e+04 8.78804336e+01 3.07e+01 2.29e+00 2.40e-01 40s
6 2.02877786e+04 1.68938661e+02 1.15e+01 1.08e+00 9.31e-02 50s
7 1.22500334e+04 2.35499963e+02 6.03e+00 3.12e-01 4.86e-02 60s
8 5.81647899e+03 3.56104339e+02 2.32e+00 4.26e-13 2.00e-02 71s
9 2.64678975e+03 7.30204234e+02 6.48e-01 3.13e-13 6.08e-03 81s
10 2.34347636e+03 8.45237120e+02 4.75e-01 3.13e-13 4.55e-03 92s
11 2.57521485e+03 1.28886597e+03 3.42e-01 3.98e-13 3.51e-03 112s
12 2.83304679e+03 1.76408230e+03 2.55e-01 3.13e-13 2.77e-03 140s
13 2.81240430e+03 2.07655283e+03 2.22e-01 3.98e-13 2.33e-03 175s
14 2.88608928e+03 2.21103174e+03 2.10e-01 3.41e-13 2.21e-03 206s
15 2.96672730e+03 2.48805003e+03 1.82e-01 3.13e-13 1.88e-03 233s
16 3.04588895e+03 2.78311597e+03 1.56e-01 3.13e-13 1.55e-03 261s
17 3.15331798e+03 3.06080233e+03 1.31e-01 2.77e-13 1.23e-03 290s
18 3.18703776e+03 3.09122050e+03 1.23e-01 3.20e-13 1.17e-03 316s
19 3.25205976e+03 3.27818355e+03 1.10e-01 3.06e-13 9.81e-04 337s
20 3.34053747e+03 3.35671306e+03 9.11e-02 2.77e-13 8.24e-04 358s
21 3.39744592e+03 3.49154561e+03 7.98e-02 3.77e-13 6.76e-04 381s
22 3.48352309e+03 3.59061737e+03 6.00e-02 3.06e-13 4.86e-04 408s
23 3.53725932e+03 3.66655784e+03 4.87e-02 3.48e-13 3.68e-04 438s
24 3.57674623e+03 3.67790503e+03 4.11e-02 3.84e-13 3.16e-04 470s
25 3.61864454e+03 3.71529940e+03 3.29e-02 3.93e-13 2.43e-04 506s
26 3.64873013e+03 3.73499349e+03 2.71e-02 3.29e-13 1.96e-04 539s
27 3.68860535e+03 3.75640763e+03 1.98e-02 3.28e-13 1.39e-04 578s
28 3.74475396e+03 3.77121455e+03 1.01e-02 3.67e-13 7.64e-05 623s
29 3.76230460e+03 3.78202237e+03 7.06e-03 3.47e-13 5.27e-05 661s
30 3.79956188e+03 3.79464092e+03 1.00e-03 4.19e-13 1.27e-05 689s
31 3.80517002e+03 3.80253731e+03 1.20e-05 3.71e-13 1.88e-06 718s
32 3.80496948e+03 3.80487918e+03 5.52e-08 4.14e-13 6.11e-08 746s
33 3.80494594e+03 3.80494560e+03 9.26e-10 4.74e-13 2.33e-10 774s
34 3.80494581e+03 3.80494581e+03 3.71e-09 4.12e-13 2.33e-13 808s
Barrier solved model in 34 iterations and 807.94 seconds (421.92 work units)
Optimal objective 3.80494581e+03
Crossover log...
7121 DPushes remaining with DInf 1.9624121e-05 809s
3512 DPushes remaining with DInf 0.0000000e+00 810s
505 DPushes remaining with DInf 0.0000000e+00 816s
285 DPushes remaining with DInf 0.0000000e+00 821s
0 DPushes remaining with DInf 0.0000000e+00 825s
708357 PPushes remaining with PInf 1.0329409e-03 826s
637301 PPushes remaining with PInf 0.0000000e+00 830s
558277 PPushes remaining with PInf 0.0000000e+00 836s
474805 PPushes remaining with PInf 0.0000000e+00 840s
322196 PPushes remaining with PInf 0.0000000e+00 845s
185897 PPushes remaining with PInf 0.0000000e+00 850s
44324 PPushes remaining with PInf 0.0000000e+00 855s
1108 PPushes remaining with PInf 0.0000000e+00 862s
0 PPushes remaining with PInf 0.0000000e+00 862s
Push phase complete: Pinf 0.0000000e+00, Dinf 1.0490706e-10 862s
Solved with barrier
Iteration Objective Primal Inf. Dual Inf. Time
715481 3.8049458e+03 0.000000e+00 0.000000e+00 865s
Solved in 715481 iterations and 864.92 seconds (470.05 work units)
Optimal objective 3.804945806e+03
User-callback calls 718074, time in user-callback 0.45 sec
julia> JuMP.solution_summary(lpr)
solution_summary(; result = 1, verbose = false)
├ solver_name : Gurobi
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : Model was solved to optimality (subject to tolerances), and an optimal solution is available.
│ └ objective_bound : 3.80495e+03
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 3.80495e+03
│ └ dual_objective_value : 3.80495e+03
└ Work counters
├ solve_time (sec) : 8.64936e+02
├ simplex_iterations : 715481
├ barrier_iterations : 34
└ node_count : 0
And a question for me now is:
is there a way that I can add the 1 Million constraints in a lazy fashion? (note that this is an LP)