I’m trying to run a piece of code on a different machine than it was written on. On this new machine, there are two GPUs: a Teska K40c and an NVIDIA GeForce GTX 650. The problem seems to be with the second one. Running ] test CUDA
gives the following error:
┌ Info: System information:
│ CUDA toolkit 11.4.1, artifact installation
│ CUDA driver 11.4.0
│ NVIDIA driver 470.57.2
│
│ Libraries:
│ - CUBLAS: 11.5.4
│ - CURAND: 10.2.5
│ - CUFFT: 10.5.1
│ - CUSOLVER: 11.2.0
│ - CUSPARSE: 11.6.0
│ - CUPTI: 14.0.0
│ - NVML: 11.0.0+470.57.2
│ - CUDNN: 8.20.2 (for CUDA 11.4.0)
│ - CUTENSOR: 1.3.0 (for CUDA 11.2.0)
│
│ Toolchain:
│ - Julia: 1.6.2
│ - LLVM: 11.0.1
│ - PTX ISA support: 3.2, 4.0, 4.1, 4.2, 4.3, 5.0, 6.0, 6.1, 6.3, 6.4, 6.5, 7.0
│ - Device capability support: sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61, sm_62, sm_70, sm_72, sm_75, sm_80
│
│ 2 devices:
│ 0: Tesla K40c (sm_35, 11.107 GiB / 11.173 GiB available)
└ 1: NVIDIA GeForce GTX 650 (sm_30, 900.750 MiB / 978.188 MiB available)
┌ Warning: Your NVIDIA GeForce GTX 650 GPU does not meet the minimal required compute capability (3.0.0 < 3.5).
│ Some functionality might be unavailable.
└ @ CUDA ~/.julia/packages/CUDA/9T5Sq/src/state.jl:237
ERROR: LoadError: BoundsError: attempt to access 1-element Vector{Any} at index [0:1]
Stacktrace:
[1] throw_boundserror(A::Vector{Any}, I::Tuple{UnitRange{Int64}})
@ Base ./abstractarray.jl:651
[2] checkbounds
@ ./abstractarray.jl:616 [inlined]
[3] getindex(A::Vector{Any}, I::UnitRange{Int64})
@ Base ./array.jl:807
[4] top-level scope
@ ~/.julia/packages/CUDA/9T5Sq/test/runtests.jl:158
[5] include(fname::String)
@ Base.MainInclude ./client.jl:444
[6] top-level scope
@ none:6
in expression starting at /home/jpereira/.julia/packages/CUDA/9T5Sq/test/runtests.jl:158
ERROR: Package CUDA errored during testing
Running the CUDA.jl introductory example gives a similar error:
julia> x_d = CUDA.fill(1.0f0, N);
julia> y_d = CUDA.fill(2.0f0, N);
julia> y_d .+= x_d
ERROR: Device capability v3.0.0 not supported by available toolchain
Altough I am not sure, it seems the issue is with the lack of support for compute capability 3.5 by the NVIDIA GeForce GTX 650 (according to https://developer.nvidia.com/cuda-gpus).
Is there a way for me to just ignore this GPU and use the Tesla K40c only?
Thank you