Hello,
I have an array composed by a vector of two elements: (in the form [1, 2], [3,4],...
). I would like to calculate the percentage of each element, so I calculated the sum of the vector (obtaining something in the form of: [3], [7]...
). Then I tried to divide the vector of the first elements by this some (to get [0.33], [0.42],...
) but instead I got a matrix.
How do I properly divide vectors in Julia?
The example is:
julia> soln.u
32-element Vector{Vector{Float64}}:
[1000.0, 1000.0]
[1367.6600181427432, 1279.2801193162964]
[2470.4796891385, 2036.944188468805]
[5114.450555250719, 3610.615999603425]
[11601.210411658707, 6877.441429534098]
[29202.513110268377, 14220.546829596376]
[79936.7711904854, 31426.650975298417]
[236625.52371589997, 74006.8620996869]
[745384.4693280015, 184282.48911711766]
[2.4437472687509363e6, 485312.9405044525]
[7.922433143990216e6, 1.3788188022842316e6]
[2.1877766766866736e7, 4.331519191847759e6]
[4.060014627282435e7, 1.2183659848120349e7]
[6.2777968383830175e7, 3.423140611354349e7]
[7.916321639200333e7, 6.267655325823425e7]
[9.989493619123092e7, 1.0705359324403352e8]
[1.1819430058769086e8, 1.4667971299850982e8]
[1.356524642999164e8, 1.8243163613064378e8]
[1.5146396530996737e8, 2.1300436252651647e8]
[1.6642929351258355e8, 2.406550906569824e8]
[1.8106913462789607e8, 2.6677768786796018e8]
[1.9550310733949912e8, 2.918585907964363e8]
[2.0990519914835802e8, 3.163868218665787e8]
[2.242656374570966e8, 3.404770774339893e8]
[2.3858562368294787e8, 3.64229193591574e8]
[2.528646165837985e8, 3.877143171737028e8]
[2.671037425800242e8, 4.109871581444607e8]
[2.8130534605450904e8, 4.340902109413748e8]
[2.954725300760899e8, 4.5705676507673633e8]
[3.0960874760858804e8, 4.799130461124946e8]
[3.2371751558658475e8, 5.026798229900373e8]
[3.32893530726487e8, 5.174678778455995e8]
julia> Σ = getindex.(soln.u, 1) + getindex.(soln.u, 2)
32-element Vector{Float64}:
2000.0
2646.9401374590398
4507.423877607305
8725.066554854144
18478.651841192805
43423.059939864754
111363.4221657838
310632.3858155869
929666.9584451192
2.929060209255389e6
9.301251946274448e6
2.6209285958714496e7
5.278380612094469e7
9.700937449737367e7
1.4183976965023756e8
2.0694852943526444e8
2.6487401358620068e8
3.180841004305602e8
3.6446832783648384e8
4.070843841695659e8
4.478468224958563e8
4.873616981359354e8
5.262920210149367e8
5.647427148910859e8
6.028148172745218e8
6.405789337575012e8
6.780909007244849e8
7.153955569958838e8
7.525292951528263e8
7.895217937210827e8
8.26397338576622e8
8.503614085720865e8
julia> eco = getindex.(soln.u, 1)/Σ
32×32 Matrix{Float64}:
3.3779e-13 4.47055e-13 7.61281e-13 1.47362e-12 … 1.27098e-7 1.33346e-7 1.39574e-7 1.43622e-7
4.61982e-13 6.11419e-13 1.04117e-12 2.01541e-12 1.73827e-7 1.82372e-7 1.9089e-7 1.96426e-7
8.34503e-13 1.10444e-12 1.88073e-12 3.64055e-12 3.13994e-7 3.29429e-7 3.44816e-7 3.54815e-7
1.72761e-12 2.28644e-12 3.89353e-12 7.53676e-12 6.50039e-7 6.81993e-7 7.13846e-7 7.34546e-7
3.91877e-12 5.18638e-12 8.83178e-12 1.70958e-11 1.4745e-6 1.54698e-6 1.61923e-6 1.66619e-6
9.86431e-12 1.30551e-11 2.22313e-11 4.30334e-11 … 3.71159e-6 3.89405e-6 4.07592e-6 4.19412e-6
2.70018e-11 3.57361e-11 6.08544e-11 1.17796e-10 1.01598e-5 1.06593e-5 1.11571e-5 1.14807e-5
7.99297e-11 1.05785e-10 1.80139e-10 3.48696e-10 3.00747e-5 3.15531e-5 3.30269e-5 3.39846e-5
2.51783e-10 3.33228e-10 5.67447e-10 1.09841e-9 9.47372e-5 9.93942e-5 0.000104037 0.000107053
8.25473e-10 1.09249e-9 1.86038e-9 3.60115e-9 0.000310596 0.000325865 0.000341084 0.000350975
2.67612e-9 3.54176e-9 6.0312e-9 1.16747e-8 … 0.00100693 0.00105643 0.00110577 0.00113783
7.39009e-9 9.78056e-9 1.66551e-8 3.22395e-8 0.00278063 0.00291732 0.00305357 0.00314212
1.37143e-8 1.81505e-8 3.09081e-8 5.98292e-8 0.00516021 0.00541388 0.00566674 0.00583106
2.12058e-8 2.80652e-8 4.77917e-8 9.25109e-8 0.00797898 0.00837121 0.00876219 0.00901628
2.67405e-8 3.53903e-8 6.02655e-8 1.16656e-7 0.0100615 0.0105561 0.0110492 0.0113696
3.37435e-8 4.46585e-8 7.60481e-8 1.47207e-7 … 0.0126965 0.0133206 0.0139428 0.0143471
3.99248e-8 5.28393e-8 8.99791e-8 1.74173e-7 0.0150223 0.0157608 0.0164969 0.0169753
4.5822e-8 6.06441e-8 1.0327e-7 1.999e-7 0.0172412 0.0180887 0.0189336 0.0194826
5.1163e-8 6.77127e-8 1.15307e-7 2.232e-7 0.0192508 0.0201972 0.0211405 0.0217535
5.62181e-8 7.4403e-8 1.26699e-7 2.45253e-7 0.0211529 0.0221927 0.0232293 0.0239029
6.11633e-8 8.09478e-8 1.37845e-7 2.66827e-7 … 0.0230136 0.0241449 0.0252726 0.0260055
6.6039e-8 8.74006e-8 1.48833e-7 2.88097e-7 0.0248481 0.0260696 0.0272872 0.0280785
7.09039e-8 9.38391e-8 1.59797e-7 3.0932e-7 0.0266786 0.0279901 0.0292974 0.030147
7.57547e-8 1.00259e-7 1.70729e-7 3.30482e-7 0.0285038 0.029905 0.0313017 0.0322094
8.05918e-8 1.06661e-7 1.81631e-7 3.51584e-7 0.0303239 0.0318145 0.0333004 0.0342661
8.54151e-8 1.13044e-7 1.92501e-7 3.72626e-7 … 0.0321387 0.0337185 0.0352934 0.0363169
9.0225e-8 1.1941e-7 2.03341e-7 3.93609e-7 0.0339485 0.0356173 0.0372808 0.0383619
9.50221e-8 1.25759e-7 2.14152e-7 4.14537e-7 0.0357535 0.037511 0.039263 0.0404016
9.98076e-8 1.32092e-7 2.24938e-7 4.35414e-7 0.0375541 0.0394002 0.0412404 0.0424363
1.04583e-7 1.38412e-7 2.35699e-7 4.56246e-7 0.0393508 0.0412852 0.0432134 0.0444666
1.09349e-7 1.44719e-7 2.4644e-7 4.77037e-7 … 0.041144 0.0431665 0.0451827 0.0464929
1.12448e-7 1.48822e-7 2.53426e-7 4.90558e-7 0.0423102 0.0443901 0.0464634 0.0478108
Even if I use this:
julia> eco = getindex.(soln.u, 1)
32-element Vector{Float64}:
1000.0
1367.6600181427432
2470.4796891385
5114.450555250719
11601.210411658707
29202.513110268377
79936.7711904854
236625.52371589997
745384.4693280015
2.4437472687509363e6
7.922433143990216e6
2.1877766766866736e7
4.060014627282435e7
6.2777968383830175e7
7.916321639200333e7
9.989493619123092e7
1.1819430058769086e8
1.356524642999164e8
1.5146396530996737e8
1.6642929351258355e8
1.8106913462789607e8
1.9550310733949912e8
2.0990519914835802e8
2.242656374570966e8
2.3858562368294787e8
2.528646165837985e8
2.671037425800242e8
2.8130534605450904e8
2.954725300760899e8
3.0960874760858804e8
3.2371751558658475e8
3.32893530726487e8
julia> p_eco = eco/Σ
32×32 Matrix{Float64}:
3.3779e-13 4.47055e-13 7.61281e-13 1.47362e-12 … 1.27098e-7 1.33346e-7 1.39574e-7 1.43622e-7
4.61982e-13 6.11419e-13 1.04117e-12 2.01541e-12 1.73827e-7 1.82372e-7 1.9089e-7 1.96426e-7
8.34503e-13 1.10444e-12 1.88073e-12 3.64055e-12 3.13994e-7 3.29429e-7 3.44816e-7 3.54815e-7
1.72761e-12 2.28644e-12 3.89353e-12 7.53676e-12 6.50039e-7 6.81993e-7 7.13846e-7 7.34546e-7
3.91877e-12 5.18638e-12 8.83178e-12 1.70958e-11 1.4745e-6 1.54698e-6 1.61923e-6 1.66619e-6
9.86431e-12 1.30551e-11 2.22313e-11 4.30334e-11 … 3.71159e-6 3.89405e-6 4.07592e-6 4.19412e-6
2.70018e-11 3.57361e-11 6.08544e-11 1.17796e-10 1.01598e-5 1.06593e-5 1.11571e-5 1.14807e-5
7.99297e-11 1.05785e-10 1.80139e-10 3.48696e-10 3.00747e-5 3.15531e-5 3.30269e-5 3.39846e-5
2.51783e-10 3.33228e-10 5.67447e-10 1.09841e-9 9.47372e-5 9.93942e-5 0.000104037 0.000107053
8.25473e-10 1.09249e-9 1.86038e-9 3.60115e-9 0.000310596 0.000325865 0.000341084 0.000350975
2.67612e-9 3.54176e-9 6.0312e-9 1.16747e-8 … 0.00100693 0.00105643 0.00110577 0.00113783
7.39009e-9 9.78056e-9 1.66551e-8 3.22395e-8 0.00278063 0.00291732 0.00305357 0.00314212
1.37143e-8 1.81505e-8 3.09081e-8 5.98292e-8 0.00516021 0.00541388 0.00566674 0.00583106
2.12058e-8 2.80652e-8 4.77917e-8 9.25109e-8 0.00797898 0.00837121 0.00876219 0.00901628
2.67405e-8 3.53903e-8 6.02655e-8 1.16656e-7 0.0100615 0.0105561 0.0110492 0.0113696
3.37435e-8 4.46585e-8 7.60481e-8 1.47207e-7 … 0.0126965 0.0133206 0.0139428 0.0143471
3.99248e-8 5.28393e-8 8.99791e-8 1.74173e-7 0.0150223 0.0157608 0.0164969 0.0169753
4.5822e-8 6.06441e-8 1.0327e-7 1.999e-7 0.0172412 0.0180887 0.0189336 0.0194826
5.1163e-8 6.77127e-8 1.15307e-7 2.232e-7 0.0192508 0.0201972 0.0211405 0.0217535
5.62181e-8 7.4403e-8 1.26699e-7 2.45253e-7 0.0211529 0.0221927 0.0232293 0.0239029
6.11633e-8 8.09478e-8 1.37845e-7 2.66827e-7 … 0.0230136 0.0241449 0.0252726 0.0260055
6.6039e-8 8.74006e-8 1.48833e-7 2.88097e-7 0.0248481 0.0260696 0.0272872 0.0280785
7.09039e-8 9.38391e-8 1.59797e-7 3.0932e-7 0.0266786 0.0279901 0.0292974 0.030147
7.57547e-8 1.00259e-7 1.70729e-7 3.30482e-7 0.0285038 0.029905 0.0313017 0.0322094
8.05918e-8 1.06661e-7 1.81631e-7 3.51584e-7 0.0303239 0.0318145 0.0333004 0.0342661
8.54151e-8 1.13044e-7 1.92501e-7 3.72626e-7 … 0.0321387 0.0337185 0.0352934 0.0363169
9.0225e-8 1.1941e-7 2.03341e-7 3.93609e-7 0.0339485 0.0356173 0.0372808 0.0383619
9.50221e-8 1.25759e-7 2.14152e-7 4.14537e-7 0.0357535 0.037511 0.039263 0.0404016
9.98076e-8 1.32092e-7 2.24938e-7 4.35414e-7 0.0375541 0.0394002 0.0412404 0.0424363
1.04583e-7 1.38412e-7 2.35699e-7 4.56246e-7 0.0393508 0.0412852 0.0432134 0.0444666
1.09349e-7 1.44719e-7 2.4644e-7 4.77037e-7 … 0.041144 0.0431665 0.0451827 0.0464929
1.12448e-7 1.48822e-7 2.53426e-7 4.90558e-7 0.0423102 0.0443901 0.0464634 0.0478108