How to divide vector elements in Julia?

Hello,
I have an array composed by a vector of two elements: (in the form [1, 2], [3,4],...). I would like to calculate the percentage of each element, so I calculated the sum of the vector (obtaining something in the form of: [3], [7]...). Then I tried to divide the vector of the first elements by this some (to get [0.33], [0.42],...) but instead I got a matrix.
How do I properly divide vectors in Julia?
The example is:

julia> soln.u
32-element Vector{Vector{Float64}}:
 [1000.0, 1000.0]
 [1367.6600181427432, 1279.2801193162964]
 [2470.4796891385, 2036.944188468805]
 [5114.450555250719, 3610.615999603425]
 [11601.210411658707, 6877.441429534098]
 [29202.513110268377, 14220.546829596376]
 [79936.7711904854, 31426.650975298417]
 [236625.52371589997, 74006.8620996869]
 [745384.4693280015, 184282.48911711766]
 [2.4437472687509363e6, 485312.9405044525]
 [7.922433143990216e6, 1.3788188022842316e6]
 [2.1877766766866736e7, 4.331519191847759e6]
 [4.060014627282435e7, 1.2183659848120349e7]
 [6.2777968383830175e7, 3.423140611354349e7]
 [7.916321639200333e7, 6.267655325823425e7]
 [9.989493619123092e7, 1.0705359324403352e8]
 [1.1819430058769086e8, 1.4667971299850982e8]
 [1.356524642999164e8, 1.8243163613064378e8]
 [1.5146396530996737e8, 2.1300436252651647e8]
 [1.6642929351258355e8, 2.406550906569824e8]
 [1.8106913462789607e8, 2.6677768786796018e8]
 [1.9550310733949912e8, 2.918585907964363e8]
 [2.0990519914835802e8, 3.163868218665787e8]
 [2.242656374570966e8, 3.404770774339893e8]
 [2.3858562368294787e8, 3.64229193591574e8]
 [2.528646165837985e8, 3.877143171737028e8]
 [2.671037425800242e8, 4.109871581444607e8]
 [2.8130534605450904e8, 4.340902109413748e8]
 [2.954725300760899e8, 4.5705676507673633e8]
 [3.0960874760858804e8, 4.799130461124946e8]
 [3.2371751558658475e8, 5.026798229900373e8]
 [3.32893530726487e8, 5.174678778455995e8]

julia> Σ = getindex.(soln.u, 1) + getindex.(soln.u, 2)
32-element Vector{Float64}:
   2000.0
   2646.9401374590398
   4507.423877607305
   8725.066554854144
  18478.651841192805
  43423.059939864754
 111363.4221657838
 310632.3858155869
 929666.9584451192
      2.929060209255389e6
      9.301251946274448e6
      2.6209285958714496e7
      5.278380612094469e7
      9.700937449737367e7
      1.4183976965023756e8
      2.0694852943526444e8
      2.6487401358620068e8
      3.180841004305602e8
      3.6446832783648384e8
      4.070843841695659e8
      4.478468224958563e8
      4.873616981359354e8
      5.262920210149367e8
      5.647427148910859e8
      6.028148172745218e8
      6.405789337575012e8
      6.780909007244849e8
      7.153955569958838e8
      7.525292951528263e8
      7.895217937210827e8
      8.26397338576622e8
      8.503614085720865e8

julia> eco = getindex.(soln.u, 1)/Σ
32×32 Matrix{Float64}:
 3.3779e-13   4.47055e-13  7.61281e-13  1.47362e-12  …  1.27098e-7   1.33346e-7   1.39574e-7   1.43622e-7
 4.61982e-13  6.11419e-13  1.04117e-12  2.01541e-12     1.73827e-7   1.82372e-7   1.9089e-7    1.96426e-7
 8.34503e-13  1.10444e-12  1.88073e-12  3.64055e-12     3.13994e-7   3.29429e-7   3.44816e-7   3.54815e-7
 1.72761e-12  2.28644e-12  3.89353e-12  7.53676e-12     6.50039e-7   6.81993e-7   7.13846e-7   7.34546e-7
 3.91877e-12  5.18638e-12  8.83178e-12  1.70958e-11     1.4745e-6    1.54698e-6   1.61923e-6   1.66619e-6
 9.86431e-12  1.30551e-11  2.22313e-11  4.30334e-11  …  3.71159e-6   3.89405e-6   4.07592e-6   4.19412e-6
 2.70018e-11  3.57361e-11  6.08544e-11  1.17796e-10     1.01598e-5   1.06593e-5   1.11571e-5   1.14807e-5
 7.99297e-11  1.05785e-10  1.80139e-10  3.48696e-10     3.00747e-5   3.15531e-5   3.30269e-5   3.39846e-5
 2.51783e-10  3.33228e-10  5.67447e-10  1.09841e-9      9.47372e-5   9.93942e-5   0.000104037  0.000107053
 8.25473e-10  1.09249e-9   1.86038e-9   3.60115e-9      0.000310596  0.000325865  0.000341084  0.000350975
 2.67612e-9   3.54176e-9   6.0312e-9    1.16747e-8   …  0.00100693   0.00105643   0.00110577   0.00113783
 7.39009e-9   9.78056e-9   1.66551e-8   3.22395e-8      0.00278063   0.00291732   0.00305357   0.00314212
 1.37143e-8   1.81505e-8   3.09081e-8   5.98292e-8      0.00516021   0.00541388   0.00566674   0.00583106
 2.12058e-8   2.80652e-8   4.77917e-8   9.25109e-8      0.00797898   0.00837121   0.00876219   0.00901628
 2.67405e-8   3.53903e-8   6.02655e-8   1.16656e-7      0.0100615    0.0105561    0.0110492    0.0113696
 3.37435e-8   4.46585e-8   7.60481e-8   1.47207e-7   …  0.0126965    0.0133206    0.0139428    0.0143471
 3.99248e-8   5.28393e-8   8.99791e-8   1.74173e-7      0.0150223    0.0157608    0.0164969    0.0169753
 4.5822e-8    6.06441e-8   1.0327e-7    1.999e-7        0.0172412    0.0180887    0.0189336    0.0194826
 5.1163e-8    6.77127e-8   1.15307e-7   2.232e-7        0.0192508    0.0201972    0.0211405    0.0217535
 5.62181e-8   7.4403e-8    1.26699e-7   2.45253e-7      0.0211529    0.0221927    0.0232293    0.0239029
 6.11633e-8   8.09478e-8   1.37845e-7   2.66827e-7   …  0.0230136    0.0241449    0.0252726    0.0260055
 6.6039e-8    8.74006e-8   1.48833e-7   2.88097e-7      0.0248481    0.0260696    0.0272872    0.0280785
 7.09039e-8   9.38391e-8   1.59797e-7   3.0932e-7       0.0266786    0.0279901    0.0292974    0.030147
 7.57547e-8   1.00259e-7   1.70729e-7   3.30482e-7      0.0285038    0.029905     0.0313017    0.0322094
 8.05918e-8   1.06661e-7   1.81631e-7   3.51584e-7      0.0303239    0.0318145    0.0333004    0.0342661
 8.54151e-8   1.13044e-7   1.92501e-7   3.72626e-7   …  0.0321387    0.0337185    0.0352934    0.0363169
 9.0225e-8    1.1941e-7    2.03341e-7   3.93609e-7      0.0339485    0.0356173    0.0372808    0.0383619
 9.50221e-8   1.25759e-7   2.14152e-7   4.14537e-7      0.0357535    0.037511     0.039263     0.0404016
 9.98076e-8   1.32092e-7   2.24938e-7   4.35414e-7      0.0375541    0.0394002    0.0412404    0.0424363
 1.04583e-7   1.38412e-7   2.35699e-7   4.56246e-7      0.0393508    0.0412852    0.0432134    0.0444666
 1.09349e-7   1.44719e-7   2.4644e-7    4.77037e-7   …  0.041144     0.0431665    0.0451827    0.0464929
 1.12448e-7   1.48822e-7   2.53426e-7   4.90558e-7      0.0423102    0.0443901    0.0464634    0.0478108

Even if I use this:

julia> eco = getindex.(soln.u, 1)
32-element Vector{Float64}:
   1000.0
   1367.6600181427432
   2470.4796891385
   5114.450555250719
  11601.210411658707
  29202.513110268377
  79936.7711904854
 236625.52371589997
 745384.4693280015
      2.4437472687509363e6
      7.922433143990216e6
      2.1877766766866736e7
      4.060014627282435e7
      6.2777968383830175e7
      7.916321639200333e7
      9.989493619123092e7
      1.1819430058769086e8
      1.356524642999164e8
      1.5146396530996737e8
      1.6642929351258355e8
      1.8106913462789607e8
      1.9550310733949912e8
      2.0990519914835802e8
      2.242656374570966e8
      2.3858562368294787e8
      2.528646165837985e8
      2.671037425800242e8
      2.8130534605450904e8
      2.954725300760899e8
      3.0960874760858804e8
      3.2371751558658475e8
      3.32893530726487e8

julia> p_eco = eco/Σ
32×32 Matrix{Float64}:
 3.3779e-13   4.47055e-13  7.61281e-13  1.47362e-12  …  1.27098e-7   1.33346e-7   1.39574e-7   1.43622e-7
 4.61982e-13  6.11419e-13  1.04117e-12  2.01541e-12     1.73827e-7   1.82372e-7   1.9089e-7    1.96426e-7
 8.34503e-13  1.10444e-12  1.88073e-12  3.64055e-12     3.13994e-7   3.29429e-7   3.44816e-7   3.54815e-7
 1.72761e-12  2.28644e-12  3.89353e-12  7.53676e-12     6.50039e-7   6.81993e-7   7.13846e-7   7.34546e-7
 3.91877e-12  5.18638e-12  8.83178e-12  1.70958e-11     1.4745e-6    1.54698e-6   1.61923e-6   1.66619e-6
 9.86431e-12  1.30551e-11  2.22313e-11  4.30334e-11  …  3.71159e-6   3.89405e-6   4.07592e-6   4.19412e-6
 2.70018e-11  3.57361e-11  6.08544e-11  1.17796e-10     1.01598e-5   1.06593e-5   1.11571e-5   1.14807e-5
 7.99297e-11  1.05785e-10  1.80139e-10  3.48696e-10     3.00747e-5   3.15531e-5   3.30269e-5   3.39846e-5
 2.51783e-10  3.33228e-10  5.67447e-10  1.09841e-9      9.47372e-5   9.93942e-5   0.000104037  0.000107053
 8.25473e-10  1.09249e-9   1.86038e-9   3.60115e-9      0.000310596  0.000325865  0.000341084  0.000350975
 2.67612e-9   3.54176e-9   6.0312e-9    1.16747e-8   …  0.00100693   0.00105643   0.00110577   0.00113783
 7.39009e-9   9.78056e-9   1.66551e-8   3.22395e-8      0.00278063   0.00291732   0.00305357   0.00314212
 1.37143e-8   1.81505e-8   3.09081e-8   5.98292e-8      0.00516021   0.00541388   0.00566674   0.00583106
 2.12058e-8   2.80652e-8   4.77917e-8   9.25109e-8      0.00797898   0.00837121   0.00876219   0.00901628
 2.67405e-8   3.53903e-8   6.02655e-8   1.16656e-7      0.0100615    0.0105561    0.0110492    0.0113696
 3.37435e-8   4.46585e-8   7.60481e-8   1.47207e-7   …  0.0126965    0.0133206    0.0139428    0.0143471
 3.99248e-8   5.28393e-8   8.99791e-8   1.74173e-7      0.0150223    0.0157608    0.0164969    0.0169753
 4.5822e-8    6.06441e-8   1.0327e-7    1.999e-7        0.0172412    0.0180887    0.0189336    0.0194826
 5.1163e-8    6.77127e-8   1.15307e-7   2.232e-7        0.0192508    0.0201972    0.0211405    0.0217535
 5.62181e-8   7.4403e-8    1.26699e-7   2.45253e-7      0.0211529    0.0221927    0.0232293    0.0239029
 6.11633e-8   8.09478e-8   1.37845e-7   2.66827e-7   …  0.0230136    0.0241449    0.0252726    0.0260055
 6.6039e-8    8.74006e-8   1.48833e-7   2.88097e-7      0.0248481    0.0260696    0.0272872    0.0280785
 7.09039e-8   9.38391e-8   1.59797e-7   3.0932e-7       0.0266786    0.0279901    0.0292974    0.030147
 7.57547e-8   1.00259e-7   1.70729e-7   3.30482e-7      0.0285038    0.029905     0.0313017    0.0322094
 8.05918e-8   1.06661e-7   1.81631e-7   3.51584e-7      0.0303239    0.0318145    0.0333004    0.0342661
 8.54151e-8   1.13044e-7   1.92501e-7   3.72626e-7   …  0.0321387    0.0337185    0.0352934    0.0363169
 9.0225e-8    1.1941e-7    2.03341e-7   3.93609e-7      0.0339485    0.0356173    0.0372808    0.0383619
 9.50221e-8   1.25759e-7   2.14152e-7   4.14537e-7      0.0357535    0.037511     0.039263     0.0404016
 9.98076e-8   1.32092e-7   2.24938e-7   4.35414e-7      0.0375541    0.0394002    0.0412404    0.0424363
 1.04583e-7   1.38412e-7   2.35699e-7   4.56246e-7      0.0393508    0.0412852    0.0432134    0.0444666
 1.09349e-7   1.44719e-7   2.4644e-7    4.77037e-7   …  0.041144     0.0431665    0.0451827    0.0464929
 1.12448e-7   1.48822e-7   2.53426e-7   4.90558e-7      0.0423102    0.0443901    0.0464634    0.0478108

You are just missing a . before the division (./). It should be eco = getindex.(soln.u, 1)./Σ to obtain elementwise division rather than matrix division.

See the simplified example below:

julia> u = [[1,2],[3,4],[5,6]]
3-element Vector{Vector{Int64}}:
 [1, 2]
 [3, 4]
 [5, 6]

julia> ∑ = sum.(u)
3-element Vector{Int64}:
  3
  7
 11

julia> percent = u./∑
3-element Vector{Vector{Float64}}:
 [0.3333333333333333, 0.6666666666666666]
 [0.42857142857142855, 0.5714285714285714]
 [0.45454545454545453, 0.5454545454545454]

julia> eco = getindex.(percent, 1)
3-element Vector{Float64}:
 0.3333333333333333
 0.42857142857142855
 0.45454545454545453
3 Likes

Another option is to use map.

julia> u = [[1,2],[3,4],[5,6]]
3-element Vector{Vector{Int64}}:
 [1, 2]
 [3, 4]
 [5, 6]

julia> Σ = map(sum,u)
3-element Vector{Int64}:
  3
  7
 11

julia> percent = map(./,u,Σ)
3-element Vector{Vector{Float64}}:
 [0.3333333333333333, 0.6666666666666666]
 [0.42857142857142855, 0.5714285714285714]
 [0.45454545454545453, 0.5454545454545454]

julia> eco = map(first,percent)
3-element Vector{Float64}:
 0.3333333333333333
 0.42857142857142855
 0.45454545454545453