```
function integrate_ODE!(du,u,p,t)
du[1] = -0.4*u[1] - u[2]
du[2] = u[1] + 0.45*u[2]
end
using deSolveDiffEq
u0 = [0.0;0.66]
tspan = (0.0,50.0)
prob = ODEProblem(integrate_ODE!,u0,tspan)
sol = solve(prob,deSolveDiffEq.euler())
08:51:07->>retcode: Default
Interpolation: 1st order linear
t: 2-element view(::Array{Float64,2}, :, 1) with eltype Float64:
0.0
50.0
u: 2-element Array{Array{Float64,1},1}:
[0.0, 0.66]
[-33.0, 15.510000000000002]
```

Introducing in solve, saveat = 0.1, I get the results!

```
sol = solve(prob,deSolveDiffEq.euler(),saveat=0.1)
>retcode: Default
Interpolation: 1st order linear
t: 501-element view(::Array{Float64,2}, :, 1) with eltype Float64:
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
⋮
49.1
49.2
49.3
49.4
49.5
49.6
49.7
49.8
49.9
50.0
u: 501-element Array{Array{Float64,1},1}:
[0.0, 0.66]
[-0.066, 0.6897]
[-0.13233, 0.7141365]
[-0.19845045, 0.7330396425]
[-0.26381639625000003, 0.7461813814125]
[-0.32788187854125, 0.7533779039510625]
[-0.39010439379470624, 0.7544917217747353]
[-0.4499493902203915, 0.7494334098751279]
[-0.5068947555990887, 0.7381629742974695]
[-0.5604352628048721, 0.7206908325809467]
[-0.6100869355507719, 0.6970783937666021]
⋮
[-4.192619673242593, 17.848340068051428]
[-5.809748893118055, 18.23225340378949]
[-7.400584277772191, 18.471729917648197]
[-8.951733898426145, 18.56289933616515]
[-10.449954476105635, 18.503056416449965]
[-11.882261938706426, 18.29069850757965]
[-13.236041311916154, 17.925553746550086]
[-14.499155034094445, 17.408599533953254]
[-15.660048786126008, 16.742071009571696]
[-16.707853935638152, 15.929459326389809]
```

My next question,

How to see the saveat, which was used by default in the previous examples? To be able to replicate it in this case