Help me outperform Matlab in numerical solution of semidiscretized PDE system as much as possible

It looks like you can’t pass the index definitions through the parameters since ModelingToolkit wants to make all the parameters symbolic. I think this code is missing a couple of using statements too. This seems to work:

using DifferentialEquations
using DifferentialEquations.DiffEqBase: dualcache
using LinearAlgebra
using ModelingToolkit
using SparseArrays

# Generate the constants
const N = 100
dx = 0.5 / N
q = dualcache(zeros(N,1))
rR = dualcache(zeros(N,1))
ϱu = 0
dp = 100e2
Tin = 200

# generate index lists to find the solution variables easily in solution vector
const indices_Tgas = 1:N
const indices_Tsol = indices_Tgas .+ N
const indices_mflux = indices_Tsol[end] + 1
const indices_RConcentrationSolid = indices_mflux[end] .+ (1:N)

# indices = (indices_Tgas, indices_Tsol, indices_mflux, indices_RConcentrationSolid)

p = (# N, # discretization intervals
     dx, # control volume length
     dp, # boundary condition: pressure differential across domain
     Tin, # boundary condition: Gas inlet temperature
     q, # caching variable for q
     rR, # caching variable for rR
     ϱu, # caching variable for ϱu (mass flux)
     # indices_Tgas, # indices for gas temperature in solution vector
     # indices_Tsol, # indices for solids temperature in solution vector
     # indices_mflux,
     # indices_RConcentrationSolid, # index for mass flux in solution vector
)

function DiscretizedSystemMassMatrixForm_noDualcache!(du,u,p,t)
  # N,dx, dp, Tin, q, rR, ϱu, indices_Tgas, indices_Tsol, indices_mflux, indices_RConcentrationSolid = p
  dx, dp, Tin, q, rR, ϱu = p
  Tgas = @view u[indices_Tgas]
  Tsol = @view u[indices_Tsol]
  dTgas = @view du[indices_Tgas]
  dTsol = @view du[indices_Tsol]
  mflux = @view u[indices_mflux]
  dmflux = @view du[indices_mflux]
  RConcsol  = @view u[indices_RConcentrationSolid]
  dRConcsol  = @view du[indices_RConcentrationSolid]

  q = 1e4 * (Tgas - Tsol)
  ϱu = mflux[1]

  rR = 5.5e6 .* exp.(.-5680 ./(273 .+ Tsol)) .* (1 .- exp.(.-RConcsol./50))

  # gas energy balance
  @inbounds begin
    dTgas[1] =  ϱu * 1000 * (Tin - Tgas[1]) - q[1] * dx
  end
  @inbounds for k in 2:N
    dTgas[k] = ϱu * 1000 * (Tgas[k-1] - Tgas[k]) - q[k] * dx
  end


  # solids energy balance
  @inbounds for k in 1:N
    dTsol[k] = q[k] / (1000 * 2000)
  end

  # gas momentum balance
  @inbounds begin
    dmflux[1] = - mflux[1] + 5e-3 * sqrt(dp)
  end

  # reactant concentration equations
  @inbounds for k in 1:N
    dRConcsol[k] = -rR[k]
  end


end

# build initial conditions
u0 = zeros(N*3 + 1)
u0[indices_Tgas] .= Tin
u0[indices_Tsol] .= 20
u0[indices_mflux] = 0.5
u0[indices_RConcentrationSolid] .= 3000

# build mass matrix
Ii = [indices_Tsol; indices_RConcentrationSolid];
Jj = [indices_Tsol; indices_RConcentrationSolid];
V = ones(length(Ii));
Msparse = sparse(Ii,Jj,V, 3*N+1, 3*N+1)


f_DAE = ODEFunction(DiscretizedSystemMassMatrixForm_noDualcache!, mass_matrix=Msparse)
probDAE = ODEProblem(f_DAE,u0,(0.0,1500),p)
de = modelingtoolkitize(probDAE)
2 Likes