I’m getting the following error when trying to run GLM with a weight vector for my data:
Julia Client – Internal Error
DomainError(-1.867506166794264e-7, "sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).")
throw_complex_domainerror(::Symbol, ::Float64) at math.jl:31
sqrt at math.jl:492 [inlined]
_broadcast_getindex_evalf at broadcast.jl:574 [inlined]
_broadcast_getindex at broadcast.jl:547 [inlined]
getindex at broadcast.jl:507 [inlined]
macro expansion at broadcast.jl:838 [inlined]
macro expansion at simdloop.jl:73 [inlined]
copyto! at broadcast.jl:837 [inlined]
copyto! at broadcast.jl:792 [inlined]
copy at broadcast.jl:768 [inlined]
materialize at broadcast.jl:748 [inlined]
stderror(::GeneralizedLinearModel{GlmResp{Array{Float64,1},Normal{Float64},IdentityLink},DensePredChol{Float64,Cholesky{Float64,Array{Float64,2}}}}) at linpred.jl:223
coeftable(::GeneralizedLinearModel{GlmResp{Array{Float64,1},Normal{Float64},IdentityLink},DensePredChol{Float64,Cholesky{Float64,Array{Float64,2}}}}) at glmfit.jl:163
coeftable at statsmodel.jl:110 [inlined]
show(::IOContext{Base.GenericIOBuffer{Array{UInt8,1}}}, ::StatsModels.DataFrameRegressionModel{GeneralizedLinearModel{GlmResp{Array{Float64,1},Normal{Float64},IdentityLink},DensePredChol{Float64,Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}) at statsmodel.jl:121
show at sysimg.jl:194 [inlined]
(::getfield(Atom, Symbol("##27#28")){StatsModels.DataFrameRegressionModel{GeneralizedLinearModel{GlmResp{Array{Float64,1},Normal{Float64},IdentityLink},DensePredChol{Float64,Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}})(::Base.GenericIOBuffer{Array{UInt8,1}}) at display.jl:17
#sprint#325(::Nothing, ::Int64, ::Function, ::Function) at io.jl:101
sprint at io.jl:97 [inlined]
render at display.jl:16 [inlined]
Type at types.jl:39 [inlined]
Type at types.jl:40 [inlined]
render at display.jl:19 [inlined]
displayandrender(::StatsModels.DataFrameRegressionModel{GeneralizedLinearModel{GlmResp{Array{Float64,1},Normal{Float64},IdentityLink},DensePredChol{Float64,Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}) at showdisplay.jl:127
(::getfield(Atom, Symbol("##115#120")){String})() at eval.jl:102
macro expansion at essentials.jl:697 [inlined]
(::getfield(Atom, Symbol("##111#116")))(::Dict{String,Any}) at eval.jl:86
handlemsg(::Dict{String,Any}, ::Dict{String,Any}) at comm.jl:164
(::getfield(Atom, Symbol("##19#21")){Array{Any,1}})() at task.jl:259
The code and data are shown below. The weight vector sums to one. Any ideas why I’m throwing this error?
ols = glm(@formula(Y ~ X), data_profit, Normal(), IdentityLink(),wts=reg_weights)
Data:
julia> show(data_profit,allrows=true)
37×2 DataFrame
│ Row │ X │ Y │
│ │ Int64 │ Float64 │
├─────┼───────┼──────────────┤
│ 1 │ 1 │ 0.000313178 │
│ 2 │ 1 │ 0.000228847 │
│ 3 │ 1 │ 0.000230182 │
│ 4 │ 1 │ 0.00023272 │
│ 5 │ 1 │ 0.000235561 │
│ 6 │ 1 │ 0.000238828 │
│ 7 │ 1 │ 0.00024262 │
│ 8 │ 1 │ 0.000246501 │
│ 9 │ 1 │ 0.000250485 │
│ 10 │ 1 │ 0.00019644 │
│ 11 │ 0 │ 0.00011969 │
│ 12 │ 0 │ 0.00010914 │
│ 13 │ 0 │ 0.000104962 │
│ 14 │ 0 │ 0.000102631 │
│ 15 │ 0 │ 0.000101194 │
│ 16 │ 0 │ 0.00010041 │
│ 17 │ 0 │ 9.98285e-5 │
│ 18 │ 0 │ 9.93539e-5 │
│ 19 │ 0 │ 9.89764e-5 │
│ 20 │ 0 │ 9.86519e-5 │
│ 21 │ 0 │ 9.83628e-5 │
│ 22 │ 0 │ 9.80978e-5 │
│ 23 │ 0 │ 9.78451e-5 │
│ 24 │ 0 │ 0.00012086 │
│ 25 │ 0 │ 2.24932e-5 │
│ 26 │ 0 │ -1.12741e-5 │
│ 27 │ 0 │ 4.30009e-6 │
│ 28 │ 1 │ 5.51942e-5 │
│ 29 │ 1 │ 5.29287e-5 │
│ 30 │ 1 │ 5.06829e-5 │
│ 31 │ 0 │ -0.000835512 │
│ 32 │ 0 │ -0.000938462 │
│ 33 │ 0 │ -0.00108555 │
│ 34 │ 0 │ -7.13685e-5 │
│ 35 │ 0 │ -4.40181e-6 │
│ 36 │ 0 │ 1.32171e-5 │
│ 37 │ 0 │ 2.06316e-5 │
julia> show(reg_weights)
[0.0695251, 0.0455689, 0.0426326, 0.0400022, 0.03757, 0.0352973, 0.0331633, 0.0311543, 0.0292603, 0.
027473, 0.0257856, 0.024192, 0.0226868, 0.021265, 0.0199222, 0.0186542, 0.017457, 0.0163271, 0.01526
08, 0.0142551, 0.0133068, 0.012413, 0.011571, 0.0107781, 0.0100319, 0.00933, 0.0186224, 0.0552164, 0
.0491013, 0.0431579, 0.0377491, 0.0329251, 0.0287195, 0.0244011, 0.0211243, 0.0182855, 0.0158137]