Hi @ertam98, welcome to the forum 
Can you give an example of your intended use-case? If you don’t have constraints, I might suggest that you read Should you use JuMP? · JuMP.
What would you like the gradient of the objective function with respect to? All variables? Just the variables that appear in the objective? Evaluated at a given point? Or the optimal solution?
Note that the gradient of :op_f is given by your ∇f function, so perhaps I don’t fully understand what your question is.
Dealing with the user-defined functions is a bit complicated, but this should point you in the right direction:
julia> using JuMP
julia> f(x...) = x[1]^2 - x[1]*x[2] + x[2]^2
f (generic function with 1 method)
julia> function ∇f(g::AbstractArray{T}, x::T...) where {T}
           g[1] = 2.0*x[1] - x[2]
           g[2] = 2.0*x[2] - x[1]
           return
       end
∇f (generic function with 1 method)
julia> begin
           model = Model()
           @operator(model, op_f, 2, f, ∇f)
           @variable(model, x[1:2])
           @objective(model, Min, op_f(x...))
       end
op_f(x[1], x[2])
julia> function build_objective_function_gradient_evaluator(model)
           ops = Dict(
               (attr.name, attr.arity) => get_attribute(model, attr)
               for attr in get_attribute(model, MOI.ListOfModelAttributesSet())
               if attr isa MOI.UserDefinedFunction
           )
           nlp = MOI.Nonlinear.Model()
           for ((name, arity), args) in ops
               MOI.Nonlinear.register_operator(nlp, name, arity, args...)
           end
           MOI.Nonlinear.set_objective(nlp, objective_function(model))
           x = all_variables(model)
           backend = MOI.Nonlinear.SparseReverseMode()
           evaluator = MOI.Nonlinear.Evaluator(nlp, backend, index.(x))
           MOI.initialize(evaluator, [:Grad])
           function eval_gradient(x_sol)
               grad = fill(NaN, length(x_sol))
               MOI.eval_objective_gradient(evaluator, grad, x_sol)
               return grad
           end
       end
build_objective_function_gradient_evaluator (generic function with 1 method)
julia> eval_gradient = build_objective_function_gradient_evaluator(model)
eval_gradient (generic function with 1 method)
julia> eval_gradient([1.5, 1.7])
2-element Vector{Float64}:
 1.3
 1.9
See also