Hello there. I am new to numerical analysis and Julia, and I intend to perform a bifurcation analysis on a two-component DDE system.
(Thanks for the DDEBifurcationKit package @rveltz!)
As a start I attempt to reproduce some of the provided examples here Github - DDEBifurcationkit Examples.
For instance, with the neuronV2.jl, I encountered this error message while running line 101-111
br_pocoll = @time continuation(
br, 1, opts_po_cont,
# PeriodicOrbitOCollProblem(100, 4);
probpo;
verbosity = 2, plot = true,
args_po...,
# ampfactor = 1/0.24391300209895822 * 0.1,
ampfactor = 1.42,
δp = 0.001,
normC = norminf,
)
It returned an error:
...
--> Hopf bifurcation point is: SubCritical
┌ Error: Careful here
└ @ DDEBifurcationKit ~/.julia/packages/DDEBifurcationKit/MCTQc/src/periodicorbit/PeriodicOrbits.jl:25
#############################################################
┌─ Start branching from Hopf bif. point to periodic orbits.
├─ Bifurcation type = SubCritical
├─── Hopf param p0 = 0.29890361547229616
├─── new param p = 0.29990361547229616, p - p0 = 0.0010000000000000009
├─── amplitude p.o. = 0.10099414538601163
├─── period T = 23.185428928051927
├─ Method =
┌─ Collocation functional for periodic orbits
├─ type : Vector{Float64}
├─ time slices (Ntst) : 140
├─ degree (m) : 3
├─ dimension (N) : 2
├─ inplace : false
├─ update section : 1
├─ jacobian : autodiffDense
├─ mesh adaptation : false
└─ # unknowns : 842
├─── phase ϕ = 0.548440789574437⋅π
#######################################################
───────────────── PALC ─────────────────
───────────────── INITIAL GUESS ─────────────────ERROR: UndefVarError: POOCollSolution not defined
Stacktrace:
[1] functionalColl!(pb::PeriodicOrbitOCollProblem{ConstantDDEBifProblem{BifFunction{typeof(neuron2VF),
...
The same error is observed with other examples that I have tried (neuron.jl, wright.jl).
Could you help me with this error? Thanks in advance for the help!