[28] phasepoint(h::AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:σ, :α, :β), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:α, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:α, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:β, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:β, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, TaskLocalRNG}}, ForwardDiff.Chunk{3}, ForwardDiff.Tag{Turing.TuringTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3}}}}}, Turing.Inference.var"#∂logπ∂θ#38"{LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:σ, :α, :β), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:α, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:α, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:β, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:β, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, TaskLocalRNG}}, ForwardDiff.Chunk{3}, ForwardDiff.Tag{Turing.TuringTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3}}}}}}, θ::Vector{Float64}, r::Vector{Float64})
@ AdvancedHMC ~/.julia/packages/AdvancedHMC/dgxuI/src/hamiltonian.jl:80
[29] phasepoint(rng::TaskLocalRNG, θ::Vector{Float64}, h::AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:σ, :α, :β), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:α, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:α, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:β, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:β, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, TaskLocalRNG}}, ForwardDiff.Chunk{3}, ForwardDiff.Tag{Turing.TuringTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3}}}}}, Turing.Inference.var"#∂logπ∂θ#38"{LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:σ, :α, :β), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:α, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:α, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:β, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:β, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, TaskLocalRNG}}, ForwardDiff.Chunk{3}, ForwardDiff.Tag{Turing.TuringTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Turing.TuringTag, Float64}, Float64, 3}}}}}})
@ AdvancedHMC ~/.julia/packages/AdvancedHMC/dgxuI/src/hamiltonian.jl:159
[30] initialstep(rng::TaskLocalRNG, model::DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, vi::DynamicPPL.TypedVarInfo{NamedTuple{(:σ, :α, :β), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:α, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:α, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:β, Setfield.IdentityLens}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:β, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}; init_params::Nothing, nadapts::Int64, kwargs::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ Turing.Inference ~/.julia/packages/Turing/LcjVL/src/mcmc/hmc.jl:164
[31] step(rng::TaskLocalRNG, model::DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}; resume_from::Nothing, init_params::Nothing, kwargs::Base.Pairs{Symbol, Int64, Tuple{Symbol}, NamedTuple{(:nadapts,), Tuple{Int64}}})
@ DynamicPPL ~/.julia/packages/DynamicPPL/txq74/src/sampler.jl:111
[32] step
@ ~/.julia/packages/DynamicPPL/txq74/src/sampler.jl:84 [inlined]
[33] macro expansion
@ ~/.julia/packages/AbstractMCMC/fWWW0/src/sample.jl:125 [inlined]
[34] macro expansion
@ ~/.julia/packages/AbstractMCMC/fWWW0/src/logging.jl:16 [inlined]
[35] mcmcsample(rng::TaskLocalRNG, model::DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, discard_initial::Int64, thinning::Int64, chain_type::Type, kwargs::Base.Pairs{Symbol, Union{Nothing, Int64}, Tuple{Symbol, Symbol}, NamedTuple{(:nadapts, :init_params), Tuple{Int64, Nothing}}})
@ AbstractMCMC ~/.julia/packages/AbstractMCMC/fWWW0/src/sample.jl:116
[36] mcmcsample
@ ~/.julia/packages/AbstractMCMC/fWWW0/src/sample.jl:95 [inlined]
[37] #sample#36
@ ~/.julia/packages/Turing/LcjVL/src/mcmc/hmc.jl:121 [inlined]
[38] sample
@ ~/.julia/packages/Turing/LcjVL/src/mcmc/hmc.jl:91 [inlined]
[39] (::AbstractMCMC.var"#sample_chain#78"{String, Base.Pairs{Symbol, Any, Tuple{Symbol, Symbol}, NamedTuple{(:chain_type, :progress), Tuple{UnionAll, Bool}}}, TaskLocalRNG, DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, Int64, Int64})(i::Int64, seed::UInt64, init_params::Nothing)
@ AbstractMCMC ~/.julia/packages/AbstractMCMC/fWWW0/src/sample.jl:511
[40] sample_chain
@ ~/.julia/packages/AbstractMCMC/fWWW0/src/sample.jl:508 [inlined]
[41] #4
@ ./generator.jl:36 [inlined]
[42] iterate
@ ./generator.jl:47 [inlined]
[43] collect(itr::Base.Generator{Base.Iterators.Zip{Tuple{UnitRange{Int64}, Vector{UInt64}}}, Base.var"#4#5"{AbstractMCMC.var"#sample_chain#78"{String, Base.Pairs{Symbol, Any, Tuple{Symbol, Symbol}, NamedTuple{(:chain_type, :progress), Tuple{UnionAll, Bool}}}, TaskLocalRNG, DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, Int64, Int64}}})
@ Base ./array.jl:782
[44] map
@ ./abstractarray.jl:3383 [inlined]
[45] mcmcsample(rng::TaskLocalRNG, model::DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, ::MCMCSerial, N::Int64, nchains::Int64; progressname::String, init_params::Nothing, kwargs::Base.Pairs{Symbol, Any, Tuple{Symbol, Symbol}, NamedTuple{(:chain_type, :progress), Tuple{UnionAll, Bool}}})
@ AbstractMCMC ~/.julia/packages/AbstractMCMC/fWWW0/src/sample.jl:523
[46] sample(rng::TaskLocalRNG, model::DynamicPPL.Model{typeof(fitlv), (:data, :prob, :fixedparameters), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, false, Vector{Float64}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(lotka_volterra_too), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tuple{Float64, Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{Turing.Essential.ForwardDiffAD{0}, (), AdvancedHMC.DiagEuclideanMetric}}, ensemble::MCMCSerial, N::Int64, n_chains::Int64; chain_type::Type, progress::Bool, kwargs::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ Turing.Inference ~/.julia/packages/Turing/LcjVL/src/mcmc/Inference.jl:269
[47] sample
@ ~/.julia/packages/Turing/LcjVL/src/mcmc/Inference.jl:258 [inlined]
[48] #sample#6
@ ~/.julia/packages/Turing/LcjVL/src/mcmc/Inference.jl:254 [inlined]
[49] sample
@ ~/.julia/packages/Turing/LcjVL/src/mcmc/Inference.jl:245 [inlined]
[50] #sample#5
@ ~/.julia/packages/Turing/LcjVL/src/mcmc/Inference.jl:241 [inlined]