Error in LinearFractional while defining integer variable

How to define Integer variable in LinearFractional.

for thebelwo code getting the error

MathOptInterface.UnsupportedConstraint{MathOptInterface.SingleVariable,MathOptInterface.Integer}: MathOptInterface.SingleVariable-in-MathOptInterface.Integer constraint is not supported by the model.

using JuMP
using Clp,Juniper,Ipopt,Cbc
mod = LinearFractionalModel(with_optimizer(Clp.Optimizer))
T =2 
B = 10 
C = 2 
Csm= [1 2 ]   
C_st = [1 2 ] 
Dtp = [50 50
      300 300]
P = 2 
NSAFETY = 1 
Cap_tb =  [66	27
           94	64
           94	91
           106	118
           118	128
           130	134
           136	138
           136	138
           136	138
           136	138]  
		  
		  
            @variable(mod,0<=X_tbp[t in 1:T,b in 1:B, p in 1:P],Int)
		    @variable(mod,0<=Y_tbc[t in 1:T,b in 1:B, c in 1:C],Int)         
		    ET = @variable(mod, [c in 1:C,b in 1:B], base_name="ET", lower_bound=0.0)

                @constraint(mod,con1[t in 1:T, b in 1:B],sum(X_tbp[t,b,p] for p in 1:P)<=Cap_tb[b,t])  
				@constraint(mod,con2[t in 1:T, p in 1:P],sum(X_tbp[t,b,p] for b in 1:B)<=Dtp[t,p])
		        @constraint(mod,con3[t in 1:T,b in 1:B],sum(Y_tbc[t,b,c] for c in 1:C)<=Cap_tb[b,t])
          



			@constraint(mod,con444[c in 1:C-1,b in 1:B],ET[c+1,b]>= ET[c,b]+sum(Y_tbc[t,b,c] for t in 1:T)+sum(Y_tbc[t,b,c+1] for t in 1:T))
			@constraint(mod,con333[c in 1:C,b in 1:B],ET[c,b]>=sum(Y_tbc[t,b,c] for t in 1:T))


for t in 1:T
    for b in 1:B
        @constraint(mod, sum(Y_tbc[t,b,c] for c in 1:C)==sum(X_tbp[t,b,p] for p in 1:P))
    end
end
 Tmov = @variable(mod,  base_name="Tmov", lower_bound=0.0)
 Ttmov = @variable(mod,  base_name="Ttmov", lower_bound=0.0)
#@variable(mod,0<=Tmov)
#@variable(mod,0<=Ttmov)
    C_s =[1 2] # number of containers moved per move
#for i in 1:1
    #xpr4=0
    for c in 1:C
        #xpr4 += sum(Y_tbc[t,b,c] for t in 1:T,b in 1:B)*(C_s/C_st[c])
         @constraint(mod, Tmov>=sum(Y_tbc[t,b,c] for t in 1:T for b in 1:B)*(C_s[c]/C_st[c]))
    end
    @constraint(mod,Ttmov== sum(Y_tbc[t,b,c]*(C_s[c]/C_st[c]) for t in 1:T,b in 1:B, c in 1:C))
  #@expression(mod,denom,Tmov)
#end
 numer= @expression(mod,Ttmov+1)
 denom= @expression(mod,Tmov+1)


set_objective(mod, JuMP.MOI.MAX_SENSE, numer, denom)

optimize!(mod)
termination_status(mod)