Error in JuMP with nonlinear objective

Hello everyone,

I am interested in the following optimization problem that I would like to solve with JuMP:

\begin{split} \min_{x \in \mathbb{R}^n} & (z^Tx)^2 - \log(b^T x[1:k])\\ \mbox{ subject to }& x[1:k] \geq 0 \end{split}

with k<n, b \in \mathbb{R}^k and z \in \mathbb{R}^n. x[1:k] denotes the first k components of the vector x.

Here is a toy problem on which I am stuck with an error

using JuMP
using Ipopt

model = Model(Ipopt.Optimizer)

z = randn(100);
b = randn(20);

@variable(model, x[1:100])
for i in 1:20
@constraint(model, x[i] >= 0.0)
end
@NLparameter(model, z[i = 1:100] == randn())
@NLparameter(model, b[i = 1:20] == randn())
@NLobjective(model, Min, sum(z[i] * x[i] for i=1:100)^2-log(sum(b[i]*x[i] for i=1:20)) )

@time optimize!(model)

# @show value(x);
# @show value(y);
# @show objective_value(model);

The output of this code :

NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...:        0
Number of nonzeros in inequality constraint Jacobian.:       20
Number of nonzeros in Lagrangian Hessian.............:     5050


Number of Iterations....: 0

Number of objective function evaluations             = 0
Number of objective gradient evaluations             = 1
Number of equality constraint evaluations            = 0
Number of inequality constraint evaluations          = 1
Number of equality constraint Jacobian evaluations   = 0
Number of inequality constraint Jacobian evaluations = 1
Number of Lagrangian Hessian evaluations             = 0
Total CPU secs in IPOPT (w/o function evaluations)   =      0.002
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Invalid number in NLP function or derivative detected.
  0.009641 seconds (71.42 k allocations: 6.870 MiB)

I initially try to write the cost function as
@NLobjective(model, Min, (value.(z)'*x)^2-log(value.(b)'*x[1:20]) ) but that didn’t work.

First note that you first definitions, are not used, they are replaced by the parameters you define.

z = randn(100);
b = randn(20);

For purposes of optimization the log function needs a strictly positive argument.
In some cases, your parameter:
@NLparameter(model, b[i = 1:20] == randn())
is initialized with negative numbers and becausex[i] >= 0.0 there is no possible choice of x that leads to a strictly positive argument for the log.

You need something like:
@NLparameter(model, b[i = 1:20] == max(0.00001, randn()))

That won’t solve the issue because the x might be initialized with zeros by default so, you also need:
@variable(model, x[1:100], start = 0.00001)

The final thing is:

model = Model(Ipopt.Optimizer)

@variable(model, x[1:100], start = 0.00001)
for i in 1:20
    @constraint(model, x[i] >= 0.0)
end
@NLparameter(model, z[i = 1:100] == randn())
@NLparameter(model, b[i = 1:20] == max(randn(), 0.00001))
@NLobjective(model, Min, sum(z[i] * x[i] for i=1:100)^2-log(sum(b[i]*x[i] for i=1:20)) )

@time optimize!(model)

I don’t know exactly how Ipopt works, so, in the future, you might need to enforce positiveness by:
@variable(model, x[1:100] >= 1e-8, start = 0.00001)
or:
@constraint(model, sum(b[i]*x[i] for i=1:20) >= 1e-8)

2 Likes

Thank you so much for your help!!!

:slight_smile:
one last thing, if you can, change the category of this post to “Optimization (Mathematical)”. It is currently in “Usage”. Many JuMP users and developers are monitoring “Optimization (Mathematical)” , so it might be faster to have questions answered in next times also.

Apparently I can move it, so I did :slight_smile:

2 Likes

Hello,

Is there a way to speed-up the optimization ? For x of size 100, the average optimization time is 40.625 ms (computed with @btime). But for a variable x of size 1000, the average optimization time is 14.972 s!!!
Since my cost function is convex, there maybe specific solvers or techniques that I can use?

I have tried with Convex.jl, but the solution found is only close to optimal. But the runtime is largely shrink to 6.915 ms

using Convex
using ECOS, SCS
b = zeros(20)
for i=1:20
    b[i] = max(randn(), 0.00001)
end
z = randn(1000);

x = Variable(1000)
problem = minimize(square(dot(z,x)) - log(dot(b,x[1:20])), x[1:20] >=0.0)
solve!(problem, ECOSSolver())
problem.optval

The output is


ECOS 2.0.5 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS

It     pcost       dcost      gap   pres   dres    k/t    mu     step   sigma     IR    |   BT
 0  +0.000e+00  -1.487e+00  +2e+01  8e-01  1e+00  1e+00  1e+00    ---    ---    0  0  - |  -  - 
 1  -1.033e+00  -1.835e+00  +1e+01  4e-01  9e-01  9e-01  5e-01  0.6266  2e-01   1  1  1 |  2  2
 2  -2.238e+00  -2.280e+00  +3e+00  1e-01  5e-01  6e-01  1e-01  0.7833  3e-02   1  1  1 |  1  1
 3  -2.783e+00  -2.623e+00  +8e-01  5e-02  2e-01  4e-01  3e-02  0.7289  3e-03   1  1  1 |  0  1
 4  -3.307e+00  -3.097e+00  +3e-01  3e-02  2e-01  4e-01  1e-02  0.6266  2e-02   1  1  1 |  1  2
 5  -4.170e+00  -3.831e+00  +7e-02  1e-02  1e-01  4e-01  3e-03  0.7759  2e-03   2  1  1 |  0  1
 6  -4.691e+00  -4.194e+00  +4e-02  1e-02  1e-01  6e-01  1e-03  0.6266  3e-01   2  1  1 |  4  2
 7  -4.513e+00  -4.128e+00  +3e-02  1e-02  1e-01  5e-01  1e-03  0.9791  9e-01   2  1  1 | 16  0
 8  -5.276e+00  -4.721e+00  +1e-02  1e-02  1e-01  6e-01  6e-04  0.6266  1e-01   1  1  1 |  3  2
 9  -5.638e+00  -5.131e+00  +6e-03  6e-03  7e-02  5e-01  2e-04  0.9791  4e-01   1  1  1 |  6  0
10  -6.184e+00  -5.679e+00  +2e-03  4e-03  4e-02  5e-01  9e-05  0.7833  2e-01   2  1  1 |  4  1
11  -6.447e+00  -6.050e+00  +7e-04  2e-03  2e-02  4e-01  3e-05  0.9791  3e-01   2  1  1 |  5  0
12  -7.038e+00  -6.608e+00  +3e-04  1e-03  2e-02  4e-01  1e-05  0.6266  5e-02   1  1  1 |  2  2
13  -7.802e+00  -7.327e+00  +8e-05  7e-04  9e-03  5e-01  3e-06  0.7833  6e-02   2  1  1 |  2  1
14  -8.040e+00  -7.625e+00  +3e-05  4e-04  5e-03  4e-01  1e-06  0.9791  3e-01   1  1  1 |  5  0
15  -8.615e+00  -8.161e+00  +1e-05  3e-04  4e-03  5e-01  5e-07  0.6266  1e-01   1  1  1 |  3  2
16  -9.276e+00  -8.798e+00  +4e-06  2e-04  2e-03  5e-01  2e-07  0.7833  1e-01   1  1  1 |  3  1
17  -9.523e+00  -9.125e+00  +1e-06  9e-05  1e-03  4e-01  5e-08  0.9791  3e-01   1  1  1 |  5  0
18  -1.010e+01  -9.672e+00  +6e-07  6e-05  8e-04  4e-01  2e-08  0.6266  1e-01   1  1  1 |  3  2
19  -1.063e+01  -1.017e+01  +2e-07  4e-05  5e-04  5e-01  9e-09  0.6266  5e-02   1  1  1 |  2  2
20  -1.122e+01  -1.076e+01  +7e-08  2e-05  3e-04  5e-01  3e-09  0.7833  1e-01   2  1  1 |  3  1
21  -1.180e+01  -1.132e+01  +2e-08  1e-05  2e-04  5e-01  9e-10  0.7833  1e-01   1  1  1 |  3  1
22  -1.222e+01  -1.181e+01  +7e-09  7e-06  8e-05  4e-01  3e-10  0.9791  3e-01   1  1  1 |  5  0
23  -1.289e+01  -1.239e+01  +3e-09  5e-06  5e-05  5e-01  1e-10  0.6266  5e-02   2  1  1 |  2  2
24  -1.307e+01  -1.268e+01  +1e-09  3e-06  3e-05  4e-01  4e-11  0.9791  4e-01   2  1  1 |  6  0
25  -1.382e+01  -1.338e+01  +4e-10  2e-06  2e-05  4e-01  2e-11  0.6266  5e-02   1  1  1 |  2  2
26  -1.452e+01  -1.396e+01  +1e-10  1e-06  1e-05  6e-01  4e-12  0.7833  5e-02   1  1  1 |  2  1
27  -1.422e+01  -1.390e+01  +8e-11  1e-06  9e-06  3e-01  3e-12  0.9791  8e-01   1  1  1 | 13  0
28  -1.494e+01  -1.458e+01  +3e-11  7e-07  6e-06  4e-01  1e-12  0.6266  5e-02   1  1  1 |  2  2
29  -1.573e+01  -1.523e+01  +7e-12  6e-07  4e-06  5e-01  3e-13  0.7833  9e-03   1  1  1 |  1  1
30  -1.627e+01  -1.579e+01  +3e-12  5e-07  3e-06  5e-01  1e-13  0.9791  4e-01   1  1  1 |  6  0
31  -1.679e+01  -1.627e+01  +1e-12  5e-07  3e-06  5e-01  4e-14  0.7833  2e-01   1  0  1 |  4  1
32  -1.682e+01  -1.634e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.2567  4e-01   0  0  0 |  3  6
33  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0673  2e-02   1  0  0 |  0 12
34  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0072  3e-02   0  0  0 |  0 22
35  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0006  3e-02   1  0  0 |  0 33
36  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0001  3e-02   1  0  0 |  0 40
37  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0000  9e-02   1  0  0 |  1 51
38  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0000  9e-02   1  0  0 |  1 58
39  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0000  3e-02   0  0  0 |  0 70
40  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0000  3e-02   1  0  0 |  0 77
41  -1.684e+01  -1.637e+01  +1e-12  4e-07  3e-06  5e-01  5e-14  0.0000  3e-02   1  0  0 |  0 84
Combined backtracking failed 90 0 0 0 sigma 0.0915438
Combined line search failed, recovering best iterate (27) and stopping.

Close to OPTIMAL (within feastol=8.7e-06, reltol=5.7e-12, abstol=8.1e-11).
Runtime: 0.006915 seconds.

┌ Warning: Problem status Suboptimal; solution may be inaccurate.
â”” @ Convex /home/mat/.julia/packages/Convex/NBqGs/src/solution.jl:51

-14.223704019591132

Instead of

@variable(model, x[1:100], start = 0.00001)
for i in 1:20
    @constraint(model, x[i] >= 0.0)
end

use

@variable(model, x[1:100], start = 0.00001)
for i=1:20
    set_lower_bound(x[i], 0.0)
end
1 Like