I’m very new to Julia so I might be misinterpreting what’s happening here.
The EnsembleSummary function stopped working for me which doesn’t seem to make sense since it is part of SciMLBase so maybe dependencies are messed up somewhere but here’s a MWE from Turing documentation
using Turing, DifferentialEquations, Plots
u0 = [1.0,1.0]
tspan = (0.0,10.0)
function multiplicative_noise!(du,u,p,t)
  x,y = u
  du[1] = p[5]*x
  du[2] = p[6]*y
end
p = [1.5,1.0,3.0,1.0,0.1,0.1]
function lotka_volterra!(du,u,p,t)
  x,y = u
  α,β,γ,δ = p
  du[1] = dx = α*x - β*x*y
  du[2] = dy = δ*x*y - γ*y
end
prob_sde = SDEProblem(lotka_volterra!,multiplicative_noise!,u0,tspan,p)
ensembleprob = EnsembleProblem(prob_sde)
data = solve(ensembleprob,SOSRI(),saveat=0.1,trajectories=1000)
Turing.setadbackend(:forwarddiff)
@model function fitlv(data, prob)
    σ ~ InverseGamma(2,3)
    α ~ truncated(Normal(1.3,0.5),0.5,2.5)
    β ~ truncated(Normal(1.2,0.25),0.5,2)
    γ ~ truncated(Normal(3.2,0.25),2.2,4.0)
    δ ~ truncated(Normal(1.2,0.25),0.5,2.0)
    ϕ1 ~ truncated(Normal(0.12,0.3),0.05,0.25)
    ϕ2 ~ truncated(Normal(0.12,0.3),0.05,0.25)
    α = 1.5
    p = [α,β,γ,δ,ϕ1,ϕ2]
    prob = remake(prob, p=p)
    predicted = solve(prob,SOSRI(),saveat=0.1)
    if predicted.retcode != :Success
        Turing.acclogp!(_varinfo, -Inf)
    end
    for j in 1:length(data)
        for i = 1:length(predicted)
            data[j][i] ~ MvNormal(predicted[i],σ)
        end
    end
end;
EnsembleSummary(data)
and this is the error message
StackOverflowError:
Stacktrace:
 [1] depwarn(::String, ::Symbol; force::Bool) at ./deprecated.jl:79
 [2] depwarn(::String, ::Symbol) at ./deprecated.jl:80
 [3] EnsembleSummary(::EnsembleSolution{Float64,3,Array{RODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float64,1},NoiseProcess{Float64,2,Float64,Array{Float64,1},Array{Float64,1},Array{Array{Float64,1},1},typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_DIST),typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_BRIDGE),true,ResettableStacks.ResettableStack{Tuple{Float64,Array{Float64,1},Array{Float64,1}},true},ResettableStacks.ResettableStack{Tuple{Float64,Array{Float64,1},Array{Float64,1}},true},RSWM{Float64},Nothing,RandomNumbers.Xorshifts.Xoroshiro128Plus},SDEProblem{Array{Float64,1},Tuple{Float64,Float64},true,Array{Float64,1},Nothing,SDEFunction{true,typeof(lotka_volterra!),typeof(multiplicative_noise!),LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing},typeof(multiplicative_noise!),Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},Nothing},SOSRI,StochasticDiffEq.LinearInterpolationData{Array{Array{Float64,1},1},Array{Float64,1}},DiffEqBase.DEStats},1}}) at ./deprecated.jl:71
 [4] EnsembleSummary(::EnsembleSolution{Float64,3,Array{RODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float64,1},NoiseProcess{Float64,2,Float64,Array{Float64,1},Array{Float64,1},Array{Array{Float64,1},1},typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_DIST),typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_BRIDGE),true,ResettableStacks.ResettableStack{Tuple{Float64,Array{Float64,1},Array{Float64,1}},true},ResettableStacks.ResettableStack{Tuple{Float64,Array{Float64,1},Array{Float64,1}},true},RSWM{Float64},Nothing,RandomNumbers.Xorshifts.Xoroshiro128Plus},SDEProblem{Array{Float64,1},Tuple{Float64,Float64},true,Array{Float64,1},Nothing,SDEFunction{true,typeof(lotka_volterra!),typeof(multiplicative_noise!),LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing},typeof(multiplicative_noise!),Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},Nothing},SOSRI,StochasticDiffEq.LinearInterpolationData{Array{Array{Float64,1},1},Array{Float64,1}},DiffEqBase.DEStats},1}}) at ./deprecated.jl:72 (repeats 32472 times)
 [5] top-level scope at In[5]:1
 [6] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091