Difference in microbenchmark result, Chairmarks.jl vs BenchmarkTools.jl

The function _.Δp/2sind(_.Δa/2) has the strange property that, on some hardware, it gets much faster after about 10 million evaluations in rapid sequence.

julia> data = @be (Δp=1, Δa=10) _.Δp/2sind(_.Δa/2) seconds=1
Benchmark: 34474 samples with 415 evaluations
min    44.790 ns
median 70.937 ns
mean   64.431 ns
max    3.556 μs

julia> using UnicodePlots

julia> scatterplot([log(s.time) for s in data.samples])
       ┌────────────────────────────────────────┐ 
   -12 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⣰⣄⣀⣄⣄⣤⣀⣄⣠⣀⣀⣅⣀⣄⣀⣄⣀⣄⣀⣠⣦⣠⣄⣠⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
       │⠒⠓⠒⠒⠒⠒⠒⠒⠚⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠂⡀⠀⠀⡀⠀⠀⢀⠀⡂⠀⠀⠀⠀⠀│ 
   -17 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣷⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀│ 
       └────────────────────────────────────────┘ 
       ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀40 000⠀ 

julia> findfirst(x -> x.time < 50e-9, data.samples)*415
10474600

julia> @b (Δp=1, Δa=10) _.Δp/2sind(_.Δa/2)
70.920 ns

julia> @b (Δp=1, Δa=10) _.Δp/2sind(_.Δa/2) seconds=1
44.786 ns

julia> @btime Δp[]/2sind(Δa[]/2) setup = (Δp=Ref(1); Δa=Ref(10));
  43.963 ns (0 allocations: 0 bytes)


julia> versioninfo()
Julia Version 1.10.2
Commit bd47eca2c8a (2024-03-01 10:14 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 16 × Intel(R) Xeon(R) CPU           E5520  @ 2.27GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, nehalem)
Threads: 1 default, 0 interactive, 1 GC (on 16 virtual cores)

You can also get faster runtime by running GC.gc() 4 times before benchmarking. I have no idea why. Perhaps Diogo Netto knows?

julia> @b (Δp=1, Δa=10) _.Δp/2sind(_.Δa/2)
70.918 ns

julia> GC.gc();GC.gc();GC.gc();GC.gc(); @b (Δp=1, Δa=10) _.Δp/2sind(_.Δa/2)
44.758 ns

It’s unclear to me weather the slow runtime or the fast runtime is “right”.

5 Likes