Hi,
I have a PythonCall result looking like:
julia> forecast
Python:
ds trend yhat_lower ... multiplicative_terms_lower multiplicative_terms_upper yhat
0 2024-04-08 06:19:00 26502.637177 26479.105747 ... 0.0 0.0 26483.719090
1 2024-04-08 06:20:00 26502.687072 26479.010556 ... 0.0 0.0 26483.783991
2 2024-04-08 06:21:00 26502.736966 26479.212692 ... 0.0 0.0 26483.848816
3 2024-04-08 06:22:00 26502.786860 26478.784132 ... 0.0 0.0 26483.913559
4 2024-04-08 06:23:00 26502.836754 26479.375907 ... 0.0 0.0 26483.978211
... ... ... ... ... ... ... ...
8636 2024-04-14 06:15:00 26524.734656 26500.998124 ... 0.0 0.0 26505.755963
8637 2024-04-14 06:16:00 26524.739858 26501.096483 ... 0.0 0.0 26505.776387
8638 2024-04-14 06:17:00 26524.745060 26500.832311 ... 0.0 0.0 26505.796769
8639 2024-04-14 06:18:00 26524.750261 26501.324523 ... 0.0 0.0 26505.817101
8640 2024-04-15 06:18:00 26532.240510 26508.760525 ... 0.0 0.0 26513.307350
After a Julia conversion, I got:
julia> julia_forecast = DataFrame(PyTable(forecast))
8641ร16 DataFrame
Row โ ds trend yhat_lower yhat_upper trend_lower trend_upper additive_terms additive_terms_lower additive_ โฏ
โ PyArrayโฆ Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64 โฏ
โโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
1 โ UInt8[0x00, 0x48, 0x42, 0x33, 0xโฆ 26502.6 26479.1 26488.6 26502.6 26502.6 -18.9181 -18.9181 โฏ
2 โ UInt8[0x00, 0xa0, 0x89, 0x2b, 0xโฆ 26502.7 26479.0 26488.1 26502.7 26502.7 -18.9031 -18.9031
3 โ UInt8[0x00, 0xf8, 0xd0, 0x23, 0xโฆ 26502.7 26479.2 26488.4 26502.7 26502.7 -18.8881 -18.8881
4 โ UInt8[0x00, 0x50, 0x18, 0x1c, 0xโฆ 26502.8 26478.8 26488.6 26502.8 26502.8 -18.8733 -18.8733
5 โ UInt8[0x00, 0xa8, 0x5f, 0x14, 0xโฆ 26502.8 26479.4 26488.9 26502.8 26502.8 -18.8585 -18.8585 โฏ
6 โ UInt8[0x00, 0x00, 0xa7, 0x0c, 0xโฆ 26502.9 26479.2 26488.6 26502.9 26502.9 -18.8439 -18.8439
7 โ UInt8[0x00, 0x58, 0xee, 0x04, 0xโฆ 26502.9 26478.9 26488.6 26502.9 26502.9 -18.8293 -18.8293
8 โ UInt8[0x00, 0xb0, 0x35, 0xfd, 0xโฆ 26503.0 26479.7 26488.8 26503.0 26503.0 -18.8149 -18.8149
โฎ โ โฎ โฎ โฎ โฎ โฎ โฎ โฎ โฎ โฑ
8635 โ UInt8[0x00, 0x38, 0x70, 0xc9, 0xโฆ 26524.7 26501.0 26510.6 26524.7 26524.7 -19.0092 -19.0092 โฏ
8636 โ UInt8[0x00, 0x90, 0xb7, 0xc1, 0xโฆ 26524.7 26501.2 26510.7 26524.7 26524.7 -18.9939 -18.9939
8637 โ UInt8[0x00, 0xe8, 0xfe, 0xb9, 0xโฆ 26524.7 26501.0 26510.1 26524.7 26524.7 -18.9787 -18.9787
8638 โ UInt8[0x00, 0x40, 0x46, 0xb2, 0xโฆ 26524.7 26501.1 26510.8 26524.7 26524.7 -18.9635 -18.9635
8639 โ UInt8[0x00, 0x98, 0x8d, 0xaa, 0xโฆ 26524.7 26500.8 26510.6 26524.7 26524.7 -18.9483 -18.9483 โฏ
8640 โ UInt8[0x00, 0xf0, 0xd4, 0xa2, 0xโฆ 26524.8 26501.3 26510.6 26524.8 26524.8 -18.9332 -18.9332
So obviously I would like to get the first column as โ2024-04-08 06:19:00โ etc.
Looked at pyconvert() without much success.
Sorry for the MWE but I come into this after a lot of processes.