I can’t find information about the usage of base.call in Julia 0.6, but it breaks some code I have and that works well in Julia 0.5…

The function I am trying to run is

immutable SavitzkyGolayFilter{M,N} end
@generated function Base.call{M,N,T}(::Type{SavitzkyGolayFilter{M,N}},
data::AbstractVector{T})
#Create Jacobian matrix
J = zeros(2M+1, N+1)
for i=1:2M+1, j=1:N+1
J[i, j] = (i-M-1)^(j-1)
end
e₁ = zeros(N+1)
e₁[1] = 1.0
#Compute filter coefficients
C = J' \ e₁
#Evaluate filter on data matrix
To = typeof(C[1] * one(T)) #Calculate type of output
expr = quote
n = size(data, 1)
smoothed = zeros($To, n)
@inbounds for i in eachindex(smoothed)
smoothed[i] += $(C[M+1])*data[i]
end
smoothed
end
for j=1:M
insert!(expr.args[6].args[2].args[2].args, 1,
:(if i - $j ≥ 1
smoothed[i] += $(C[M+1-j])*data[i-$j]
end)
)
push!(expr.args[6].args[2].args[2].args,
:(if i + $j ≤ n
smoothed[i] += $(C[M+1+j])*data[i+$j]
end)
)
end
return expr
end

And it returns a

LoadError: UndefVarError: call not defined

in Julia 0.6. I think I have missed something there ?

immutable SavitzkyGolayFilter{M,N} end
@generated function (::SavitzkyGolayFilter{M,N})(data::AbstractVector{T}) where {M, N, T}
#Create Jacobian matrix
J = zeros(2M+1, N+1)
for i=1:2M+1, j=1:N+1
J[i, j] = (i-M-1)^(j-1)
end
e₁ = zeros(N+1)
e₁[1] = 1.0
#Compute filter coefficients
C = J' \ e₁
#Evaluate filter on data matrix
To = typeof(C[1] * one(T)) #Calculate type of output
expr = quote
n = size(data, 1)
smoothed = zeros($To, n)
@inbounds for i in eachindex(smoothed)
smoothed[i] += $(C[M+1])*data[i]
end
smoothed
end
for j=1:M
insert!(expr.args[6].args[2].args[2].args, 1,
:(if i - $j ≥ 1
smoothed[i] += $(C[M+1-j])*data[i-$j]
end)
)
push!(expr.args[6].args[2].args[2].args,
:(if i + $j ≤ n
smoothed[i] += $(C[M+1+j])*data[i+$j]
end)
)
end
return expr
end

This snippet works fine in julia-v0.6. Here are some tests:

the corresponding version of where in v0.5 is @generated function (::SavitzkyGolayFilter{M,N}){M,N,T}(data::AbstractVector{T}) which works fine in both v0.5 and v0.6