ANN: CausalInference.jl




A very vanilla (at the moment) Julia package for causal inference, graphical models and structure learning with the PC algorithm. The package contains for now the classical PC algorithm and some related functionality.

See the documentation for details and perhaps issue #1 (Roadmap/Contribution) if you are interested.

The algorithms use the Julia package LightGraphs. Graphs are represented by sorted adjacency lists (vectors in the implemention). CPDAGs are just DiGraphs where unoriented edges are represented by both a forward and a backward directed edge.


  • D. M. Chickering: Learning Equivalence Classes of Bayesian-Network Structures. Journal of Machine Learning Research 2 (2002), 445-498.
  • D. Colombo, M. H. Maathuis: Order-Independent Constraint-Based Causal Structure Learning. Journal of Machine Learning Research 15 (2014), 3921-3962.