Advice on using ModelingToolkit to solve Lagrange Problems

julia> using JuMP, Ipopt

julia> function solve()
           model = Model(Ipopt.Optimizer)
           @variable(model, x[1:2] >= 0.001, start = 1)
           @NLobjective(model, Max, 16 * log(x[1]) + 9 * log(x[2]))
           @NLconstraint(model, x[1]^2 / 100 + x[2]^2 / 36 == 100)
           optimize!(model)
           @assert termination_status(model) == LOCALLY_SOLVED
           return value.(x)
       end
solve (generic function with 1 method)

julia> solve()
This is Ipopt version 3.13.4, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...:        2
Number of nonzeros in inequality constraint Jacobian.:        0
Number of nonzeros in Lagrangian Hessian.............:        4

Total number of variables............................:        2
                     variables with only lower bounds:        2
                variables with lower and upper bounds:        0
                     variables with only upper bounds:        0
Total number of equality constraints.................:        1
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  0.0000000e+00 1.00e+02 1.19e+01  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0
   1  1.6922650e+02 7.28e+04 6.03e+07  -1.0 1.58e+03    -  6.27e-04 1.00e+00f  1
   2  1.5946715e+02 1.86e+04 3.79e+08  -1.0 8.15e+02   6.0 1.00e+00 1.00e+00h  1
   3  1.4227187e+02 4.62e+03 9.46e+07  -1.0 3.78e+02    -  1.00e+00 1.00e+00h  1
   4  1.2546702e+02 1.13e+03 2.36e+07  -1.0 1.87e+02    -  1.00e+00 1.00e+00h  1
   5  1.1009062e+02 2.60e+02 5.87e+06  -1.0 8.97e+01    -  1.00e+00 1.00e+00h  1
   6  9.8892524e+01 4.69e+01 1.35e+06  -1.0 3.81e+01    -  1.00e+00 1.00e+00h  1
   7  9.4544237e+01 3.74e+00 1.82e+05  -1.0 1.08e+01    -  1.00e+00 1.00e+00h  1
   8  9.4089100e+01 3.38e-02 3.22e+03  -1.0 1.02e+00    -  1.00e+00 1.00e+00h  1
   9  9.4091188e+01 5.90e-06 7.70e-01  -1.0 1.33e-02    -  1.00e+00 1.00e+00h  1
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
  10  1.0032943e+02 5.03e+00 1.77e-01  -1.7 2.08e+01    -  7.29e-01 1.00e+00f  1
  11  1.0359036e+02 1.03e+01 2.84e-02  -1.7 2.50e+01    -  1.00e+00 1.00e+00f  1
  12  1.0239742e+02 2.68e-01 4.61e-03  -1.7 2.93e+00    -  1.00e+00 1.00e+00h  1
  13  1.0236419e+02 7.69e-04 1.14e-05  -1.7 2.52e-01    -  1.00e+00 1.00e+00h  1
  14  1.0236410e+02 6.26e-06 1.01e-07  -3.8 1.47e-02    -  1.00e+00 1.00e+00h  1
  15  1.0236410e+02 4.59e-10 2.27e-11  -5.7 1.26e-04    -  1.00e+00 1.00e+00h  1
  16  1.0236410e+02 5.68e-14 2.56e-14  -8.6 1.29e-06    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 16

                                   (scaled)                 (unscaled)
Objective...............:  -1.0236409660088709e+02    1.0236409660088709e+02
Dual infeasibility......:   2.5600289097858465e-14    2.5600289097858465e-14
Constraint violation....:   5.6843418860808015e-14    5.6843418860808015e-14
Complementarity.........:   2.5059564600335962e-09   -2.5059564600335962e-09
Overall NLP error.......:   2.5059564600335962e-09    5.6843418860808015e-14


Number of objective function evaluations             = 17
Number of objective gradient evaluations             = 17
Number of equality constraint evaluations            = 17
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 17
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 16
Total CPU secs in IPOPT (w/o function evaluations)   =      0.009
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
2-element Vector{Float64}:
 79.99999999824524
 36.00000000140383
2 Likes