hi mr. odow, yes gladly:
data - vector of floats
new signal is
y[1]=x1[1]*data[1]+x1[2]*data[2]
attribute (obj function) is
maxumize sum
tanh(x2[1]*y[i-1]) * y[i]
complex goal is
tanh(x2[1]*y[i-1]+x2[2]*y[i-2]+ ... ) * y[i])
so it is simplified, but its based on good core
using JuMP
using Ipopt
model = Model(Ipopt.Optimizer)
S=2 #
D=3 #line
@variable(model, x1[1:S])
@variable(model, x2[1:D])
@NLexpressions(model, begin
y[i=1:3000], sum(data[2*(i-1)+1+j]* x1[j+1] for j=0:1 )
end)
@NLobjective(
model,
Max,
sum( tanh(x2[1]*y[i] ) *y[i+1] for i = 3:100 ) #just for 100 points
)
optimize!(model)
print(objective_value(model))