With the same code and Tracker, I get this error:
sample(ts_extra_simple_model_1, NUTS{Turing.TrackerAD}(), 1_000)
d is 6.620016389825301
sigma is 0.9934251329566222
eltype R, K is Float64Float64
d is 6.620016389825301
sigma is 0.9934251329566222
eltype R, K is Float64Float64
d is 6.620016389825301 (tracked)
sigma is 0.9934251329566222 (tracked)
eltype R, K is Float64Float64
ERROR: MethodError: no method matching Float64(::Tracker.TrackedReal{Float64})
Closest candidates are:
(::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat at rounding.jl:200
(::Type{T})(::T) where T<:Number at boot.jl:772
(::Type{T})(::AbstractChar) where T<:Union{AbstractChar, Number} at char.jl:50
...
Stacktrace:
[1] convert(#unused#::Type{Float64}, x::Tracker.TrackedReal{Float64})
@ Base .\number.jl:7
[2] setindex!
@ .\array.jl:968 [inlined]
[3] fast_react_diffuse!(du::Matrix{Float64}, u::Matrix{Float64}, p::Tuple{Tracker.TrackedReal{Float64}, Matrix{Float64}, Matrix{Float64}}, t::Float64)
@ Main .\REPL[64]:5
[4] (::ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing})(::Matrix{Float64}, ::Vararg{Any})
@ SciMLBase C:\Users\Brendan\.julia\packages\SciMLBase\xWByK\src\scimlfunctions.jl:1962
[5] initialize!(integrator::OrdinaryDiffEq.ODEIntegrator{Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, true, Matrix{Float64}, Nothing, Float64, Tuple{Tracker.TrackedReal{Float64}, Matrix{Float64}, Matrix{Float64}}, Float64, Float64, Float64, Float64, Vector{Matrix{Float64}}, ODESolution{Float64, 3, Vector{Matrix{Float64}}, Nothing, Nothing, Vector{Float64}, Vector{Vector{Matrix{Float64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Tracker.TrackedReal{Float64}, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, OrdinaryDiffEq.InterpolationData{ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Vector{Matrix{Float64}}, Vector{Float64}, Vector{Vector{Matrix{Float64}}}, OrdinaryDiffEq.Tsit5Cache{Matrix{Float64}, Matrix{Float64}, Matrix{Float64}, OrdinaryDiffEq.Tsit5ConstantCache{Float64, Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}}, DiffEqBase.DEStats}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, OrdinaryDiffEq.Tsit5Cache{Matrix{Float64}, Matrix{Float64}, Matrix{Float64}, OrdinaryDiffEq.Tsit5ConstantCache{Float64, Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, OrdinaryDiffEq.DEOptions{Float64, Float64, Float64, Float64, PIController{Rational{Int64}}, typeof(DiffEqBase.ODE_DEFAULT_NORM), typeof(opnorm), Nothing, CallbackSet{Tuple{}, Tuple{}}, typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), DataStructures.BinaryHeap{Float64, DataStructures.FasterForward}, DataStructures.BinaryHeap{Float64, DataStructures.FasterForward}, Nothing, Nothing, Int64, Tuple{}, Float64, Tuple{}}, Matrix{Float64}, Float64, Nothing, OrdinaryDiffEq.DefaultInit}, cache::OrdinaryDiffEq.Tsit5Cache{Matrix{Float64}, Matrix{Float64}, Matrix{Float64}, OrdinaryDiffEq.Tsit5ConstantCache{Float64, Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False})
@ OrdinaryDiffEq C:\Users\Brendan\.julia\packages\OrdinaryDiffEq\vfMzV\src\perform_step\low_order_rk_perform_step.jl:736
[6] __init(prob::ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Tracker.TrackedReal{Float64}, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, alg::Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, timeseries_init::Tuple{}, ts_init::Tuple{}, ks_init::Tuple{}, recompile::Type{Val{true}}; saveat::Float64, tstops::Tuple{}, d_discontinuities::Tuple{}, save_idxs::Nothing, save_everystep::Bool, save_on::Bool, save_start::Bool, save_end::Nothing, callback::Nothing, dense::Bool, calck::Bool, dt::Float64, dtmin::Nothing, dtmax::Float64, force_dtmin::Bool, adaptive::Bool, gamma::Rational{Int64}, abstol::Nothing, reltol::Nothing, qmin::Rational{Int64}, qmax::Int64, qsteady_min::Int64, qsteady_max::Int64, beta1::Nothing, beta2::Nothing, qoldinit::Rational{Int64}, controller::Nothing, fullnormalize::Bool, failfactor::Int64, maxiters::Int64, internalnorm::typeof(DiffEqBase.ODE_DEFAULT_NORM), internalopnorm::typeof(opnorm), isoutofdomain::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), unstable_check::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), verbose::Bool, timeseries_errors::Bool, dense_errors::Bool, advance_to_tstop::Bool, stop_at_next_tstop::Bool, initialize_save::Bool, progress::Bool, progress_steps::Int64, progress_name::String, progress_message::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), userdata::Nothing, allow_extrapolation::Bool, initialize_integrator::Bool, alias_u0::Bool, alias_du0::Bool, initializealg::OrdinaryDiffEq.DefaultInit, kwargs::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ OrdinaryDiffEq C:\Users\Brendan\.julia\packages\OrdinaryDiffEq\vfMzV\src\solve.jl:493
[7] #__solve#562
@ C:\Users\Brendan\.julia\packages\OrdinaryDiffEq\vfMzV\src\solve.jl:5 [inlined]
[8] #solve_call#26
@ C:\Users\Brendan\.julia\packages\DiffEqBase\5rKYk\src\solve.jl:472 [inlined]
[9] solve_up(prob::ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, sensealg::Nothing, u0::Matrix{Float64}, p::Tuple{Tracker.TrackedReal{Float64}, Matrix{Float64}, Matrix{Float64}}, args::Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}; kwargs::Base.Pairs{Symbol, Float64, Tuple{Symbol, Symbol}, NamedTuple{(:saveat, :dt), Tuple{Float64, Float64}}})
@ DiffEqBase C:\Users\Brendan\.julia\packages\DiffEqBase\5rKYk\src\solve.jl:834
[10] solve(prob::ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, args::Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}; sensealg::Nothing, u0::Nothing, p::Tuple{Tracker.TrackedReal{Float64}, Matrix{Float64}, Matrix{Float64}}, wrap::Val{true}, kwargs::Base.Pairs{Symbol, Float64, Tuple{Symbol, Symbol}, NamedTuple{(:saveat, :dt), Tuple{Float64, Float64}}})
@ DiffEqBase C:\Users\Brendan\.julia\packages\DiffEqBase\5rKYk\src\solve.jl:801
[11] extra_simple_troubleshootfitlv(__model__::DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, __varinfo__::DynamicPPL.TypedVarInfo{NamedTuple{(:d, :sigma), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:d, Setfield.IdentityLens}, Int64}, Vector{Gamma{Float64}}, Vector{AbstractPPL.VarName{:d, Setfield.IdentityLens}}, TrackedArray{…,Vector{Float64}}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}}, TrackedArray{…,Vector{Float64}}, Vector{Set{DynamicPPL.Selector}}}}}, Tracker.TrackedReal{Float64}}, __context__::DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random._GLOBAL_RNG}, covariates::Tuple{Matrix{Float64}, Matrix{Float64}}, response::Vector{Float64}, sample_idx::CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, prob::ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem})
@ Main .\REPL[85]:9
[12] macro expansion
@ C:\Users\Brendan\.julia\packages\DynamicPPL\zPOYL\src\model.jl:593 [inlined]
[13] _evaluate!!
@ C:\Users\Brendan\.julia\packages\DynamicPPL\zPOYL\src\model.jl:576 [inlined]
[14] evaluate_threadunsafe!!
@ C:\Users\Brendan\.julia\packages\DynamicPPL\zPOYL\src\model.jl:551 [inlined]
[15] evaluate!!
@ C:\Users\Brendan\.julia\packages\DynamicPPL\zPOYL\src\model.jl:504 [inlined]
[16] evaluate!!
@ C:\Users\Brendan\.julia\packages\DynamicPPL\zPOYL\src\model.jl:515 [inlined]
[17] evaluate!!
@ C:\Users\Brendan\.julia\packages\DynamicPPL\zPOYL\src\model.jl:523 [inlined]
[18] LogDensityFunction
@ C:\Users\Brendan\.julia\packages\Turing\szPqN\src\Turing.jl:38 [inlined]
[19] logdensity
@ C:\Users\Brendan\.julia\packages\Turing\szPqN\src\Turing.jl:42 [inlined]
[20] #48
@ C:\Users\Brendan\.julia\packages\LogDensityProblems\oAYeE\src\AD_Tracker.jl:25 [inlined]
[21] #593
@ C:\Users\Brendan\.julia\packages\Tracker\a9oj5\src\back.jl:148 [inlined]
[22] forward(f::Tracker.var"#593#595"{LogDensityProblems.var"#48#49"{Turing.LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:d, :sigma), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:d, Setfield.IdentityLens}, Int64}, Vector{Gamma{Float64}}, Vector{AbstractPPL.VarName{:d, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext}}, Tuple{TrackedArray{…,Vector{Float64}}}}, ps::Tracker.Params)
@ Tracker C:\Users\Brendan\.julia\packages\Tracker\a9oj5\src\back.jl:135
[23] forward(f::Function, args::Vector{Float64})
@ Tracker C:\Users\Brendan\.julia\packages\Tracker\a9oj5\src\back.jl:148
[24] logdensity_and_gradient(∇ℓ::LogDensityProblems.TrackerGradientLogDensity{Turing.LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:d, :sigma), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:d, Setfield.IdentityLens}, Int64}, Vector{Gamma{Float64}}, Vector{AbstractPPL.VarName{:d, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext}}, x::Vector{Float64})
@ LogDensityProblems C:\Users\Brendan\.julia\packages\LogDensityProblems\oAYeE\src\AD_Tracker.jl:25
[25] ∂logπ∂θ
@ C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\hmc.jl:166 [inlined]
[26] ∂H∂θ
@ C:\Users\Brendan\.julia\packages\AdvancedHMC\iWHPQ\src\hamiltonian.jl:31 [inlined]
[27] phasepoint
@ C:\Users\Brendan\.julia\packages\AdvancedHMC\iWHPQ\src\hamiltonian.jl:76 [inlined]
[28] phasepoint(rng::Random._GLOBAL_RNG, θ::Vector{Float64}, h::AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblems.TrackerGradientLogDensity{Turing.LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:d, :sigma), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:d, Setfield.IdentityLens}, Int64}, Vector{Gamma{Float64}}, Vector{AbstractPPL.VarName{:d, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext}}}, Turing.Inference.var"#∂logπ∂θ#44"{LogDensityProblems.TrackerGradientLogDensity{Turing.LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:d, :sigma), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:d, Setfield.IdentityLens}, Int64}, Vector{Gamma{Float64}}, Vector{AbstractPPL.VarName{:d, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext}}}})
@ AdvancedHMC C:\Users\Brendan\.julia\packages\AdvancedHMC\iWHPQ\src\hamiltonian.jl:153
[29] initialstep(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, vi::DynamicPPL.TypedVarInfo{NamedTuple{(:d, :sigma), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:d, Setfield.IdentityLens}, Int64}, Vector{Gamma{Float64}}, Vector{AbstractPPL.VarName{:d, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:sigma, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}; init_params::Nothing, nadapts::Int64, kwargs::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ Turing.Inference C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\hmc.jl:170
[30] step(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}; resume_from::Nothing, init_params::Nothing, kwargs::Base.Pairs{Symbol, Int64, Tuple{Symbol}, NamedTuple{(:nadapts,), Tuple{Int64}}})
@ DynamicPPL C:\Users\Brendan\.julia\packages\DynamicPPL\zPOYL\src\sampler.jl:104
[31] macro expansion
@ C:\Users\Brendan\.julia\packages\AbstractMCMC\fnRmh\src\sample.jl:120 [inlined]
[32] macro expansion
@ C:\Users\Brendan\.julia\packages\ProgressLogging\6KXlp\src\ProgressLogging.jl:328 [inlined]
[33] macro expansion
@ C:\Users\Brendan\.julia\packages\AbstractMCMC\fnRmh\src\logging.jl:9 [inlined]
[34] mcmcsample(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, discard_initial::Int64, thinning::Int64, chain_type::Type, kwargs::Base.Pairs{Symbol, Int64, Tuple{Symbol}, NamedTuple{(:nadapts,), Tuple{Int64}}})
@ AbstractMCMC C:\Users\Brendan\.julia\packages\AbstractMCMC\fnRmh\src\sample.jl:111
[35] sample(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ Turing.Inference C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\hmc.jl:133
[36] sample
@ C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\hmc.jl:103 [inlined]
[37] #sample#2
@ C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\Inference.jl:145 [inlined]
[38] sample
@ C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\Inference.jl:138 [inlined]
[39] #sample#1
@ C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\Inference.jl:135 [inlined]
[40] sample(model::DynamicPPL.Model{typeof(extra_simple_troubleshootfitlv), (:covariates, :response, :sample_idx, :prob), (), (), Tuple{Tuple{Matrix{Float64}, Matrix{Float64}}, Vector{Float64}, CartesianIndices{3, Tuple{StepRange{Int64, Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}, ODEProblem{Matrix{Float64}, Tuple{Float64, Float64}, true, Tuple{Float64, Matrix{Float64}, Matrix{Float64}}, ODEFunction{true, SciMLBase.FullSpecialize, typeof(fast_react_diffuse!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}, alg::NUTS{Turing.Essential.TrackerAD, (), AdvancedHMC.DiagEuclideanMetric}, N::Int64)
@ Turing.Inference C:\Users\Brendan\.julia\packages\Turing\szPqN\src\inference\Inference.jl:129
[41] top-level scope
@ REPL[87]:1