You can set up prob(x,y) as the first value returned from mvnormcdf:
prob(x, y) = mvnormcdf(Σ, a-μ, [x; y]-μ)[1]
Also, your cdf in ∇prob need the first argument to work, e.g.:
cdf(Normal(),(y-(μ[2]+ρ/sqrt(vari[1])*(x-μ[1])))/sqrt(vari[2]^2*(1- ρ^2))) #I added Normal(), not sure if this is correct for you
Then this works:
using JuMP, LinearAlgebra
using Distributions, NLopt
using Random
using MvNormalCDF
begin
ex2 = Model(NLopt.Optimizer)
set_optimizer_attribute(ex2, "algorithm", :LD_MMA)
@variable(ex2, x[1:2] >= 0)
@objective(ex2, Min, x[1] + x[2])
set_start_value(x[1], 5)
set_start_value(x[2], 5)
p = 0.9 # probability
μ = [5; 5] # mean
vari = [4; 4] # variance
ρ = 0.5 # correlation
Σ = [vari[1] ρ; ρ vari[2]] # covariance matrix
a = [-Inf; -Inf]
norm_cdf(x) = cdf(Normal(), x)
norm_pdf(x) = exp(-(x^2) / 2) / sqrt(2 * pi)
register(ex2, :cdf, 1, norm_cdf, norm_pdf; autodiff = true)
# Define the mvnormcdf and its gradient, then register the function
prob(x, y) = mvnormcdf(Σ, a-μ, [x; y]-μ)[1]
function ∇prob(g::AbstractVector{T}, x::T, y::T) where {T}
g[1] = norm_pdf((x - μ[1])/sqrt(vari[1])) * cdf(Normal(),(y-(μ[2]+ρ/sqrt(vari[1])*(x-μ[1])))/sqrt(vari[2]^2*(1- ρ^2)))
g[2] = norm_pdf((y - μ[2])/sqrt(vari[2]))* cdf(Normal(),(x-(μ[1]+ρ/sqrt(vari[2])*(y-μ[2])))/sqrt(vari[1]^2*(1- ρ^2)))
return
end
register(ex2, :mvncdf, 2, prob, ∇prob)
# Use the mvncdf in the nonlinear constraint
# This is where the type error occurs
@NLconstraint(ex2,mvncdf(x[1], x[2]) >= p)
JuMP.optimize!(ex2)
println(value.(x))
end
And I got:
[8.247724657052249, 8.247724657052249]