If you want to use Turing, as @mohamed82008 mentioned you can write the model as follows:
using Turing
@model mymodel(Y, w) = begin
mu ~ Normal()
sigma ~ truncated(Cauchy(0, 5), 0, Inf)
for y in Y
@logpdf() += w * logpdf(Normal(mu, sigma), y) - pdf(Normal(mu/10, sigma^(1/2)), y)
end
end
result = sample(mymodel(data, 1.0), NUTS(0.7), 1000)