You may also want to try some alternative solvers. First, let me - just for convenience - rename your matrices so that they correspond to the common conventions used by solvers. Your A will become C, your B will become A after transposition:
C = [1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0]
A = [0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; -1252.0 1250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0; 1250.0 -1252.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0; 0.0 2.0 -1252.0 1250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0; 0.0 0.0 1250.0 -1252.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0; -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1252.0 -1250.0 0.0 0.0; 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1250.0 1252.0 -2.0 0.0; 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.0 1252.0 -1250.0; 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1250.0 1252.0; 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0]'
Now, I am aware of two alternatives for solving Lyapunov equation:
julia> using MatrixEquations
julia> X = lyapc(A,C)
16×16 Matrix{Float64}:
15279.3 -15293.4 12471.6 … -223.391 -119.321 115.15
-15293.4 15299.2 -12479.8 227.77 114.793 -119.321
12471.6 -12479.8 15299.2 114.793 227.77 -223.391
-12455.4 12471.6 -15293.4 -119.321 -223.391 227.961
-2.78533e-12 2.2311e-11 -2.34454e-8 1.21925e-11 -9.91488e-10 9.90487e-10
1.06155e-11 -2.97575e-11 2.34695e-8 … 0.5 9.91008e-10 -9.90498e-10
⋮ ⋱ ⋮
9.78416e-10 -9.78896e-10 -3.18567e-11 9.85301e-12 2.73115e-14 1.40998e-14
227.961 -223.391 -119.321 7.10242 -6.05262 3.9942
-223.391 227.77 114.793 -4.9365 4.00557 -6.05262
-119.321 114.793 227.77 4.00557 -4.9365 7.10242
115.15 -119.321 -223.391 … -6.05262 7.10242 -4.92681
julia> A*X+X*A'+C
16×16 Matrix{Float64}:
3.3527e-8 -3.49999e-8 -1.3459e-9 -9.35604e-10 … 2.41243e-9 -2.72769e-9 4.49009e-9 -2.63853e-9
-3.49999e-8 3.64698e-8 1.17352e-9 1.10988e-9 -2.49065e-9 2.80954e-9 -4.42813e-9 2.57208e-9
-1.3459e-9 1.17352e-9 -4.86263e-8 4.56729e-8 3.24606e-9 -3.6765e-9 4.3874e-9 -2.1422e-9
-9.35604e-10 1.10988e-9 4.56729e-8 -4.27212e-8 -3.22284e-9 3.65187e-9 -4.42378e-9 2.18074e-9
-2.49747e-9 2.48474e-9 -1.66074e-9 1.65346e-9 -7.63123e-11 8.03766e-11 3.14344e-11 -3.66214e-11
5.33328e-9 -5.326e-9 4.77667e-9 -4.77121e-9 … 7.03722e-11 -7.77618e-11 3.45324e-12 5.57066e-12
⋮ ⋱ ⋮
1.88513e-9 -1.88631e-9 1.96059e-9 -1.95914e-9 2.40963e-11 -2.31539e-11 -1.49818e-11 1.37126e-11
2.41243e-9 -2.49065e-9 3.24606e-9 -3.22284e-9 -7.75162e-11 8.55078e-11 1.25947e-10 -1.4731e-10
-2.72769e-9 2.80954e-9 -3.6765e-9 3.65187e-9 8.55078e-11 -9.43823e-11 -1.29694e-10 1.51797e-10
4.49009e-9 -4.42813e-9 4.3874e-9 -4.42378e-9 1.25947e-10 -1.29694e-10 -1.10189e-10 1.43357e-10
-2.63853e-9 2.57208e-9 -2.1422e-9 2.18074e-9 … -1.4731e-10 1.51797e-10 1.43357e-10 -1.77527e-10
and
julia> using ControlMatrixEquations
julia> X = lyapc(A,C)
16×16 Matrix{Float64}:
15279.3 -15293.3 12471.6 … -223.387 -119.323 115.147 -15293.3 15299.2 -12479.8 227.773 114.79 -119.323 12471.6 -12479.8 15299.2 114.79 227.773 -223.387 -12455.4 12471.6 -15293.3 -119.323 -223.387 227.964 -2.61548e-12 2.21302e-11 -2.34452e-8 1.21753e-11 -9.91495e-10 9.90495e-10 1.04541e-11 -2.9604e-11 2.34692e-8 … 0.5 9.91015e-10 -9.90506e-10 ⋮ ⋱ ⋮ 9.78423e-10 -9.78905e-10 -3.18727e-11 9.853e-12 2.7605e-14 1.39602e-14
227.964 -223.387 -119.323 7.10262 -6.0528 3.99402
-223.387 227.773 114.79 -4.93629 4.00538 -6.0528
-119.323 114.79 227.773 4.00538 -4.93629 7.10262
115.147 -119.323 -223.387 … -6.0528 7.10262 -4.92661
julia> A*X+X*A'+C16×16 Matrix{Float64}: 3.36389e-8 -3.51083e-8 -1.50165e-9 -8.36706e-10 … 2.40959e-9 -2.72439e-9 4.48801e-9 -2.64033e-9 -3.50854e-8 3.65519e-8 1.28263e-9 1.05764e-9 -2.48701e-9 2.80511e-9 -4.42472e-9 2.57256e-9 -1.57833e-9 1.30631e-9 -4.85399e-8 4.55455e-8 3.24075e-9 -3.67374e-9 4.38195e-9 -2.14322e-9 -7.61101e-10 1.03502e-9 4.56016e-8 -4.2609e-8 -3.21617e-9 3.64777e-9 -4.42071e-9 2.18392e-9 -2.49929e-9 2.49383e-9 -1.66438e-9 1.6571e-9 -7.63976e-11 8.0405e-11 3.1477e-11 -3.67208e-11 5.3351e-9 -5.32782e-9 4.7803e-9 -4.77485e-9 … 7.05427e-11 -7.78471e-11 3.31113e-12 5.65592e-12 ⋮ ⋱ ⋮ 1.88534e-9 -1.88663e-9 1.96076e-9 -1.95922e-9 2.41025e-11 -2.31735e-11 -1.49392e-11 1.36744e-11
2.41596e-9 -2.49111e-9 3.24749e-9 -3.21498e-9 -7.74358e-11 8.5367e-11 1.25663e-10 -1.47177e-10
-2.72917e-9 2.80772e-9 -3.67852e-9 3.64461e-9 8.53111e-11 -9.41252e-11 -1.29703e-10 1.51957e-10
4.49071e-9 -4.42183e-9 4.38627e-9 -4.41719e-9 1.25676e-10 -1.2959e-10 -1.10448e-10 1.43313e-10
-2.63916e-9 2.5658e-9 -2.14402e-9 2.17699e-9 … -1.47204e-10 1.5186e-10 1.4371e-10 -1.77583e-10