Might be good to add docs for predict
to the packages, but from the test of OrdinalMultinomialModels.jl you can get:
julia> using OrdinalMultinomialModels, RDatasets
julia> housing = dataset("MASS", "housing");
julia> houseplr1 = polr(@formula(Sat ~ Infl + Type + Cont), housing,
LogitLink(), wts = housing[!, :Freq])
StatsModels.TableRegressionModel{OrdinalMultinomialModel{Int64, Float64, LogitLink}, Matrix{Float64}}
Sat ~ Infl + Type + Cont
Coefficients:
───────────────────────────────────────────────────────────────
Estimate Std.Error t value Pr(>|t|)
───────────────────────────────────────────────────────────────
intercept Low|Medium -0.496141 0.124541 -3.98376 0.0002
intercept Medium|High 0.690706 0.125212 5.51628 <1e-06
Infl: Medium 0.566392 0.104963 5.39611 <1e-05
Infl: High 1.28881 0.126705 10.1718 <1e-14
Type: Apartment -0.572352 0.118747 -4.81991 <1e-05
Type: Atrium -0.366182 0.156766 -2.33586 0.0226
Type: Terrace -1.09101 0.151514 -7.20075 <1e-09
Cont: High 0.360284 0.0953574 3.77825 0.0003
───────────────────────────────────────────────────────────────
julia> predict(houseplr1, housing,kind=:probs)
72×3 DataFrame
Row │ Low Medium High
│ Float64? Float64? Float64?
─────┼──────────────────────────────
1 │ 0.378448 0.287676 0.333876
2 │ 0.378448 0.287676 0.333876
3 │ 0.378448 0.287676 0.333876
(...)