Benchmarking at the ns scale is very tricky. The following benchmark shows muhc more of what you would expect
x=rand(100)
julia> @benchmark foldl(*, $x)
BenchmarkTools.Trial: 10000 samples with 986 evaluations.
Range (min … max): 49.161 ns … 112.373 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 49.452 ns ┊ GC (median): 0.00%
Time (mean ± σ): 51.039 ns ± 3.411 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
██ ▂▅ ▄▄ ▁▃ ▁
██▃▄▅▆▆▇▇▆███▇▆█▇▇███▇██▇▇▇▇▅██▇▆▆▅▅▅▆▆▅▅▆▅▅▅▅▅▄▄▄▄▅▄▄▄▅▄▄▃▅ █
49.2 ns Histogram: log(frequency) by time 64.5 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark foldl(/, $x)
BenchmarkTools.Trial: 10000 samples with 792 evaluations.
Range (min … max): 154.717 ns … 295.852 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 157.114 ns ┊ GC (median): 0.00%
Time (mean ± σ): 160.321 ns ± 8.681 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█▄▄▄▄▅▆ ▁ ▁ ▁▅▁▁▂▂▂▃ ▁
████████▇██████▇█████████████████▇█▇▇▆▇▇▇▇▆▆▅▆▇▅▅▅▅▅▄▄▅▆▅▅▄▃▅ █
155 ns Histogram: log(frequency) by time 189 ns <
Memory estimate: 0 bytes, allocs estimate: 0.