Hi there; JuMP.jl
and InfiniteOpt.jl
will sure do.
@yhchang you can also have a look at OptimalControl.jl
for a combination of direct (= JuMP like) and shooting method approaches. The Goddard example cited by @odow (with an additional state constraint) reads like that:
ocp = @def begin # definition of the optimal control problem
tf ∈ R, variable
t ∈ [t0, tf], time
x = (r, v, m) ∈ R³, state
u ∈ R, control
x(t0) == [ r0, v0, m0 ]
m(tf) == mf, (1)
0 ≤ u(t) ≤ 1
r(t) ≥ r0
0 ≤ v(t) ≤ vmax
ẋ(t) == F0(x(t)) + u(t) * F1(x(t))
r(tf) → max
end
F0(x) = begin
r, v, m = x
D = Cd * v^2 * exp(-β*(r - 1)) # Drag force
return [ v, -D/m - 1/r^2, 0 ]
end
F1(x) = begin
r, v, m = x
return [ 0, Tmax/m, -b*Tmax ]
end
Check out below for the complete example: