Yes:
julia> df = DataFrame(x1 = rand('a':'z', 50), x2 = rand(50), x3 = rand(Int, 50));
julia> describe(df)
3×7 DataFrame
Row │ variable mean min median max nmissing eltype
│ Symbol Union… Any Union… Any Int64 DataType
─────┼───────────────────────────────────────────────────────────────────────────────────────────────────
1 │ x1 b z 0 Char
2 │ x2 0.557368 0.0171211 0.61268 0.980724 0 Float64
3 │ x3 -8.54368e17 -9192866872846841147 -1.90444e18 8714825590927121417 0 Int64
you can also pass extra arguments to customize which metrics are calculated:
julia> describe(df, :q75, :nunique, :first, :last)
3×5 DataFrame
Row │ variable q75 nunique first last
│ Symbol Union… Union… Any Any
─────┼────────────────────────────────────────────────────────────────────────
1 │ x1 22 k d
2 │ x2 0.766689 0.795076 0.252337
3 │ x3 3.48812e18 3819380600561978128 913260025103986027
(allowed arguments are :mean, :std, :min, :q25, :median, :q75, :max, :nunique, :nmissing, :first, :last, :eltype)