Just copying and pasting @dmbates code in the first answer, I’m also getting a different result in variance, Std.Dev and Std.errors estimates.
using RDatasets, MixedModels
titanic = RDatasets.dataset("datasets", "Titanic");
m = fit(GeneralizedLinearMixedModel, @formula(Survived ~ 1 + Age + Sex + (1|Class)), titanic, Binomial(), wts=float.(titanic.Freq))
m
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 1)
Survived ~ 1 + Age + Sex + (1 | Class)
Distribution: Binomial{Float64}
Link: LogitLink()
Deviance: 2227.9565
Variance components:
Column Variance Std.Dev.
Class (Intercept) 26.841378 5.1808665
Number of obs: 32; levels of grouping factors: 4
Fixed-effects parameters:
────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
────────────────────────────────────────────────────
(Intercept) 1.12409 2.76454 0.406611 0.6843
Age: Child 1.04558 2.03346 0.514188 0.6071
Sex: Male -2.41575 1.16525 -2.07317 0.0382
────────────────────────────────────────────────────
I’m on MixedModels v2.3.0