The code in Bayesian Logistic Regression generalizes to arbitrary number of columns/features:
using Turing
using LazyArrays
using Random: seed!
seed!(123)
@model function logreg(X, y; predictors=size(X, 2))
#priors
α ~ Normal(0, 2.5)
β ~ filldist(TDist(3), predictors)
#likelihood
y ~ arraydist(LazyArray(@~ BernoulliLogit.(α .+ X * β)))
end;