Sorry, I just realized I assumed your matrix was symmetric/Hermitian (i.e., had a unitary eigendecomposition). More generally, you want to use the singular value decomposition:
julia> using LinearAlgebra
julia> x = rand(3); y = rand(3); A = x * y' # A is some random rank-1 matrix
3×3 Matrix{Float64}:
0.206881 0.02146 0.00257651
0.139733 0.0144947 0.00174024
0.395132 0.0409876 0.004921
julia> opnorm(A, 1) ≈ opnorm(A, 2)
false
julia> (U, σ, V) = svd(A);
julia> σ[1] ≈ opnorm(A, 2)
true
julia> B = U' * A * V # B is rotation of A (U and V are unitary)
3×3 Matrix{Float64}:
0.469935 1.04626e-17 -8.67362e-19
2.86845e-17 7.47916e-18 -3.92335e-19
-0.0 0.0 0.0
julia> opnorm(B, 1) ≈ opnorm(B, 2) ≈ opnorm(A, 2)
true
julia> C = U * B * V'; C ≈ A # Transformation is reversible
true