Thank you! When I try running that code I end up getting an error about no method matching acclogp!(::Float64)
.
C = [0.089398 0.0267295 0.007992; 0.0 0.000164962 4.31057e-5; 0.0170703 0.00223028 0.000291394; 0.0 0.0 0.00431887]
@model function dyadRel(C)
nCrosses = size(C)[2]
d ~ Dirichlet(nCrosses, 1 / nCrosses)
target = sum(log.(C * d))
Turing.acclogp!(target)
end
sample(dyadRel(C), NUTS(0.5), MCMCThreads(), 100, 4)
julia> sample(dyadRel(C), NUTS(0.5), MCMCThreads(), 100, 4)
ERROR: MethodError: no method matching acclogp!(::Float64)
Closest candidates are:
acclogp!(::DynamicPPL.VarInfo, ::Any) at C:\Users\jdsel\.julia\packages\DynamicPPL\MRwtL\src\varinfo.jl:617
acclogp!(::DynamicPPL.ThreadSafeVarInfo, ::Any) at C:\Users\jdsel\.julia\packages\DynamicPPL\MRwtL\src\threadsafe.jl:19
When I modify the code based on what I had been guessing and to have _varinfo
based on [ANN] Turing.jl 0.12.0 release the model runs at least. But I get a warning about using an internal variable Warning: you are using the internal variable _varinfo
. Is this a warning that should be concerning?
C = [0.089398 0.0267295 0.007992; 0.0 0.000164962 4.31057e-5; 0.0170703 0.00223028 0.000291394; 0.0 0.0 0.00431887]
@model dyadRel(C) = begin
nCrosses = size(C)[2]
Δ ~ Dirichlet(nCrosses, 1 / nCrosses)
lp = sum(log.(C * Δ))
Turing.acclogp!(_varinfo, lp)
end
sample(dyadRel(C), NUTS(0.5), MCMCThreads(), 100, 4)
Iterations = 1:50
Thinning interval = 1
Chains = 1, 2, 3, 4
Samples per chain = 50
internals = acceptance_rate, hamiltonian_energy, hamiltonian_energy_error, is_accept, log_density, lp, max_hamiltonian_energy_error, n_steps, nom_step_size, numerical_error, step_size, tree_depth
parameters = Δ[1], Δ[2], Δ[3]
2-element Array{ChainDataFrame,1}
Summary Statistics
parameters mean std naive_se mcse ess r_hat
────────── ────── ────── ──────── ────── ──────── ──────
Δ[1] 0.3466 0.2479 0.0175 0.0018 111.7912 1.0274
Δ[2] 0.2571 0.2373 0.0168 0.0310 125.2170 1.0299
Δ[3] 0.3963 0.2427 0.0172 0.0293 132.4176 1.0059
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
────────── ────── ────── ────── ────── ──────
Δ[1] 0.0003 0.1239 0.3212 0.5270 0.8542
Δ[2] 0.0001 0.0385 0.1770 0.4398 0.7939
Δ[3] 0.0569 0.2049 0.3708 0.5697 0.8781
Thank you for all your help on this!