Add an "optimize_assert_optimal" functionality in JuMP would be handier?

This is an actual experiment I’m doing currently. And JuMP give me Warning message without mentioning the name of the model I’ve established. Therefore I am not able to locate the source of this Warning. @odow

julia> while true                                                                                                              
           opt_ass_opt(trh, "trh")                                                                                             
           x = jvr6.(trh_x); oLh_check = JuMP.value(oLh); lb = JuMP.objective_bound(trh);                                      
           JuMP.fix.(tr2_x, x) # 🖌️                                                                                            
           proper_Q = get_proper_Q(x) # ✅                                                                                     
           updVec .= false                                                                                                     
           for j in 1:proper_Q[1]                                                                                              
               Y = proper_Q[3][:, :, j]                                                                                        
               JuMP.fix.(tr2_Y, Y) # 🖌️                                                                                        
               opt_ass_opt(tr2, "tr2")                                                                                         
               b2 = jvr6.(tr2_b2); oΛ2_check = JuMP.value(oΛ2) # 🥑✂️                                                          
               set_argZ_objective(x, Y, b2); opt_ass_optortime(argZ, "argZ")                                                   
               Z_new = jvr6.(argZ_Z)                                                                                           
               cn, px, pY, pb = JuMP.value(argZ_cn), jvr6.(argZ_c_x), jvr6.(argZ_c_Y), jvr6.(argZ_c_b2)                        
               if oΛ2_check < cn + ip(px, x) + ip(pY, Y) + ip(pb, b2) - UPDTOL                                                 
                   add_cut_for_oΛ2(cn, px, pY, pb)                                                                             
                   updVec[2] = true                                                                                            
               end                                                                                                             
               recruit(Z_list, Z_new)                                                                                          
               proper_P = get_proper_P(x, Y, Z_list) # ✅                                                                      
               add_cut_for_oLh(x, proper_Q, proper_P, oLh_check) && (updVec[1] = true)                                         
           end                                                                                                                 
           @info "$updVec, lb = $lb"                                                                                           
           all(updVec .== false) && break                                                                                      
       end
[ Info: Bool[1, 1], lb = -208.90723332481141
┌ Warning: The addition operator has been used on JuMP expressions a large number of times. This warning is safe to ignore but may indicate that model generation is slower than necessary. For performance reasons, you should not add expressions in a loop. Instead of x += y, use add_to_expression!(x,y) to modify x in place. If y is a single variable, you may also use add_to_expression!(x, coef, y) for x += coef*y.
└ @ JuMP K:\judepot1112\packages\JuMP\i68GU\src\operators.jl:282
[ Info: Bool[1, 1], lb = 0.6
[ Info: Bool[1, 1], lb = 1.23
[ Info: Bool[1, 1], lb = 1.23

As you can see (restricted to the code I’ve posted here), there are 3 models trh, tr2 and argZ.
And for some information about this Warning, you can check this post if you have time, thanks.